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fbm H = 0.2 H = 0.5 H = 0.6

Tent map 0.5766 0.0078 1.0569

Mixture (α = 0.2) 0.9591 0.8721 2.6039

Lorenz 1.8544 1.6360 1.9381

Mixture (α = 0.5) 0.9244 1.0678 2.8903

(approximation of a random process fbm and the quality is defined by the specified

statistics An, Bn, Dn).

Key words: fractional Brownian motion, Lyapunov exponent, Lorenz system.

the state is the solution of nonlinear differential or difference equation like xn = X(tn),

the behavior can be highly irregular and extremely complex. In some cases the behav-

ior is estimated like chaotic. In the first approximation, we can determine the chaocity

by the property of the system to construct i trajectories in a bounded domain of the

phase space. Properties of dynamical systems which generate chaotic solutions, has been

widely discussed (results and references in the monographs The simplest example is an

one-dimensional dynamical system

xn+1 = f(xn,m)

which generates chaotic solution for some functions f and values of parameter m. In

particular, for logistic function f

xn+1 = mxn(1− xn), 0 < xn < 1,m > 0

the plot of solution looks like white noise with some values m > 3, 6.

So, the problem statement the nature of time series analysis nature is do the observed

data have stochastic nature, or deterministic. A lot of papers have been devoted to this

problem by 90s. The essence of these results is as follows. Let’s construct some statistics

of observed time series, the values of which will be different from random or deterministic

chaotic sequences. There are a lot of criteria of difference between chaotic and stochastic

nature of time series developed in the last years. One of the main characteristics of the a

priori deterministic series is the Lyapunov exponent I. It’s using a presence of dynamical

system, which is generating research data by estimation of Lyapunov exponent, so it

doesn’t work for the algorithm of random process for calculation I. The criterion of

chaotic for a deterministic time series is a positive Lyapunov exponent. It’s equal I = ln 2

for logistic sequence xn+1 = 4xn(1− xn).

Note that the above results have been proved only for a certain class of dynamical

systems which generated deterministic chaos. As usual, the situation of mixture "chaotic-

randomness" is a normal for the natural observed data (one of the main task is to

determine their correlation in the time series). It’s normal to expect that the quality of

the approximation of this mixture depends on the specified ratio in the proposed model
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In our society, there are various type networks. We have lived our life by using

networks. Examples of networks are transportation network, flight network and so on.

Recently, various networks around our life have became more complex and large scale.

Complex network have attracted grate deal of attention from various fields. Some re-

searchers discover small-world network [1] and scale-free network [2]. These network

models have various types of feature quantities. Examples of feature quantities are path

length, degree distribution, clustering coefficient and so on. Moreover, in the complex

network, there are various network with propagation. The pandemic outbreak of viral

infection and the traffic jam of the transportation network are mentioned as an example

of propagation in the real network. However, there are not many studies of large- scale

network of continuous-time real physical systems such as electrical circuits Therefore,

it is important to investigate the chaos propagation and the spread of chaotic behavior

under some difficult situations for the circuits.

As previous studies, the chaos propagation and the spread of chaotic behavior have

been investigated only in simple networks such as ladder and ring topology [3]. In this

simple network, the periodic attractors change to the chaotic attractors by increasing

the coupling strength.

The chaotic circuit is shown in Fig. 1. This circuit consists of a negative resistor, two

inductors, a capacitor and dual- directional diodes. This chaotic circuit is called Nishio-

Inaba circuit. We propose different topology complex networks with coupled chaotic

circuit. Figure 2 shows the proposed two types networks. Proposed network models

consist of many nodes and edges. We set chaotic circuit in node, and resistor R in edge.

Each node is coupled by one edge. We use 25 coupled chaotic circuits in Fig. 2(A)

and 49 coupled chaotic circuits in Fig. 2(B). Furthermore, one circuit is set to generate
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chaotic attractor and the other circuits are set to generate three-periodic attractors.

In this study, we investigate the influence of chaotic behavior in complex networks

by changing network topology. First, we investigate ratio of spreading chaotic behavior

by changing network topology in small network. Second, we verify chaotic behavior in

large-scale complex network. Finally, we observe how to spread of chaotic behavior by

increasing the coupling strength.
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Figure 1: Chaotic circuit.
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Figure 2: Attractors of chaotic circuit.
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circuit. Figure 2 shows the proposed two types networks. Proposed network models

consist of many nodes and edges. We set chaotic circuit in node, and resistor R in edge.

Each node is coupled by one edge. We use 25 coupled chaotic circuits in Fig. 2(A)

and 49 coupled chaotic circuits in Fig. 2(B). Furthermore, one circuit is set to generate
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by changing network topology. First, we investigate ratio of spreading chaotic behavior

by changing network topology in small network. Second, we verify chaotic behavior in

large-scale complex network. Finally, we observe how to spread of chaotic behavior by

increasing the coupling strength.
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In this study, we investigate the influence of chaotic behavior in complex networks

by changing network topology. First, we investigate ratio of spreading chaotic behavior

by changing network topology in small network. Second, we verify chaotic behavior in

large-scale complex network. Finally, we observe how to spread of chaotic behavior by
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The concept of integrability of a continuous map in the plane introduced in [1] (see

also [2]), is generalized for an upper semicontinuous two-valued map defined in a convex

unbounded domain of the plane.

Criterion is proved for integrability of above multivalued maps. This criterion is based

on the reduction of a considered two-valued map to an upper semicontinuous two-valued

skew product of maps of an interval defined on an unbounded (with respect to second

variable) rectangle of the plane.

Obtained results are applied to the investigation of the upper semicontinuous two-

valued map connected with the trace map

F (x, y) = (xy, (x− 2)2).

This trace map arises in quasicrystal physics.

Considerations of this work are based on use of geometric results obtained in [1] for

the above trace map.

This is the joint work with S.S. Belmesova.

REFERENCES

[1] Belmesova S. S., Efremova L. S. On the Concept of Integrability for Discrete Dy-

namical Systems. Investigation of Wandering Points of Some Trace Map// Nonlinear

Maps and their Applic. Springer Proc. in Math. and Statist., 112 (2015), 127–158.

[2] Efremova L. S. Dynamics of Skew Products of Maps of an Interval// Russian Math.

Surveys, 72:1(433) (2017), 107-192.


