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Abstract—We propose a memristor–based Bonhöeffer van der
Pol oscillator. The three types of the chaotic attractors; one–
scroll positive attractor, one–scroll negative attractor, and two–
scroll attractor are investigated by replacing the third-power
nonlinear resistor with the memristor. In addition, the one
parameter bifurcation is obtained by changing the parameter of
the memristor. Finally, we do numerical and theoretical analysis
to make clear the complex behaviors.

I. INTRODUCTION

Chaos has four properties; nonlinearity, sensitive of initial
conditions dependence, boundedness, and nonperiodicity. In
the electrical fields, chaos has been investigated on the chaotic
systems, and it is applied for network modeling [1-3], secu-
rity systems [4-6], and complex network of coupled chaotic
circuits [7-9]. Many research groups have used a memristor
for the chaotic circuits to reveal the complex behaviors, and
applied for the technologies of chaos [10-13]. In particular, a
Bonhöeffer van der Pol oscillator is one of the chaotic circuits
in Fig. 1, and it is developed for network systems [3], [14].
This circuit has the chaotic attractor and the one periodic
attractor coexist in Fig. 2.

Fig. 1: Bonhöeffer van der Pol oscillator.

(a) (b)

Fig. 2: Numerical simulation results. (a) Chaotic attractor. (b)
Periodic attractor.

A memristor is theoretically introduced by L. O. Chua in
1971 [15]. It is known as the fourth basic circuit element. The
conductance (the resistance) of the memoristor depends on
the flux (the charge). Many researchers have obtained new
chaos in the chaotic circuits by using the memristors [10-
13]. However, the memristor–based Bonhöeffer van der Pol
oscillator has not been proposed. Therefore, we focus on using
the memristor for the Bonhöeffer van der Pol oscillator.

In this study, we propose the memristor–based Bonhöeffer
van der Pol oscillator. First, we evaluate the complex behav-
iors of the numerical simulation results, and corresponds the
attactors and the Lyapunov exponents. Second, we investi-
gate the effect of the memristor for the chaotic behaviors
to calculate the time series of the flux of the memristor.
Third, we investigate the complex behaviors dependence on
the memristor changing the one parameter of the memristor.
Finally, we analyze the stable and unstable states considering
the dependence on the flux of the memristor.

II. PROPOSED MODEL

Figure 3(a) shows the schematic model of the flux-
controlled third-power memristor, and Fig. 3(b) shows the flux
φ – charge q characteristic curve of the memristor [10, 11].

(a) (b)

Fig. 3: Memristor model. (a) Schematic model. (b) φ–q
characteristic curve.

The conductance of the memristor W (φ) is called mem-
ductance. The memristor is characterized by the third-power
function q(φ), and the memductance W (φ) is defined as the
gradient of the function q(φ).

q(φ) = −aφ+ bφ3 (a, b > 0). (1)

W (φ) =
dq(φ)

dφ
= −a+ 3bφ2. (2)
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We replace the flux-controlled memristor model of the
third-power nonlinear resistor of the Bonhöeffer van der Pol
oscillator. Figure 4 shows the memristor–based Bonhöeffer van
der Pol oscillator.

Fig. 4: Memristor–based Bonhöeffer van der Pol oscillator.

The circuit equations are derived as follows from Kirch-
hoff’s laws. 

C
dv1
dt

= −v1W (φ)− i

C
dv2
dt

= −v2
R

+ i

L
di

dt
= v1 − v2

dφ

dt
= v1.

(3)

For numerical calculations, the circuit equations in Eq. (3)
should be normalized. The variables and parameters are as
follow.

v1 =
1√
LC

x, v2 =
1√
LC

y, i =
1

L
z, φ = w

t =
√
LCτ, α =

√
L

C
, β =

1

R

√
L

C
.

(4)

Hence, the normalized circuit equations are given as follows.

dx

dτ
= −αW (w)x− z

dy

dτ
= −βy + z

dz

dτ
= x− y

dw

dτ
= x.

(5)

In addition, the q−φ characteristic curve of the memristor is
also normalized as follows.

q(w) = −aw + bw3 (a, b > 0). (6)

W (w) =
dq(w)

dw
= −a+ 3bw2. (7)

By calculating the normalized circuit equations by the Runge–
Kutta method, we investigate the complex behaviors of the
memristor–based Bonhöeffer van der Pol oscillator. Here, the
step size of the Runge–Kutta method h = 0.01.

III. RESULTS

A. Chaotic behaviors

We investigate the chaotic state on the several initial con-
ditions (x, y, z, w). The parameters α = 1.46, β = 1.25,
a = 1, and b = 1/3. Figure 5(a) and (b) show the chaotic
attractors. In addition, we derive the Poincaré maps to analyze
the chaotic state. We define Poincaré section as the region
H ∈ {x = 0, y > 0}. Figure 5(c) shows the chaotic Poincaré
maps when the solution orbits pass through the Poincaré
section H .

(a) (b) (c)

(1)

(2)

(3)

Fig. 5: Numerical simulation results of the chaotic attractors
[τ : 14,000, 16,000]. (1) Initial condition (0.001, 0.001, 0,
0). (2) Initial condition (−0.001, −0.001, 0, 0). (3) Initial
condition (0.001, 0, 0, 0). (a) Chaotic attractors (x-z). (b)
Chaotic attractors (x-w). (c) Poincaré maps (y-z).

On the several initial conditions, we obtain three types of
the chaotic attractors; one–scroll positive attractor, one–scroll
negative attractor, and two–scroll attractor by replacing the
third-power nonlinear resistor with the memristor.

Next, we calculate the Lyapunov exponent, which means
averages of divergence. If it is positive and the total of all of
them is negative, the attractor represents chaos. The Lyapunov
exponents λk of each initial condition are listed in Tab. I.
Figure 7 shows the time series of λk. The index k = 1, 2, 3, 4.
λk is calculated by QR method [10].

TABLE I: Lyapunov exponents of the chaotic attractors.

Lyapunov exponents
λ1 λ2 λ3 λ4

Case (1) 0.0397 0.000 0.000 −0.3571
Case (2) 0.0397 0.000 0.000 −0.3571
Case (3) 0.0482 0.000 0.000 −0.3320

252



(1)
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Fig. 6: Numerical simulation results of the time series of
the Lyapunov exponent. (1) Initial condition (0.001, 0.001,
0, 0). (2) Initial condition (−0.001, −0.001, 0, 0). (3) Initial
condition (0.001, 0, 0, 0).

All the Lyapunov exponents λ1 have positive values in Tab.
I. The attractors in Fig. 5 represent chaos by calculating the
normalized circuit equations and the Lyapunov exponents.

Moreover, we focus on the memristor behaviors, and re-
search the effect for the chaotic state. Figure 7(a) shows the
time series of x, and Fig. 7(b) shows the time series of w.

(1)

(2)

(3)

(a) (b)

Fig. 7: Numerical simulation results of the time series [τ :
14,000, 16,000]. (1) Initial condition (0.001, 0.001, 0, 0). (2)
Initial condition (−0.001, −0.001, 0, 0). (3) Initial condition
(0.001, 0, 0, 0). (a) Time series of x. (b) Time series of w.

In Fig. 7(a), x oscillates in the region −0.50 ≤ a ≤ 0.50 on
all the initial conditions. On the other hand, in Fig. 7(b), the
time series of w when the case (1) shows that w oscillates in
the positive region. Similarly, w also oscillates in the negative
region when the case (2). When the case (3), w oscillates in the
positive and negative regions. Comparing the chaotic attractor
and the time series of w, the types of the chaotic attractors
depends on the changes of the variable of the memristor w.
Therefore, three types of the chaotic state are observed by
changing the initial conditions and the behaviors of w.

B. Complex behavior dependence on memristor
We investigate the complex behaviors dependence on the

memristor by changing the one parameter of the memristor a.
We fix the initial condition (0, 0.001, 0, 0) and the parameters
α = 1.46, β = 1.25, b = 1/3. The periodic attractors are
shown in Fig. 8 (a) and (b). Figure 8(c) shows the Poincaré
maps. We also calculate the Lyapunov exponents λk of each
initial condition in Tab. II.

(a) (b)

(3)

(2)

(1)

(c)

Fig. 8: Numerical simulation results of the periodic attractors
[τ : 14,000, 16,000]. (1) a = 0.95. (2) a = 0.97. (3) a = 0.96.
(a) Periodic attractors (x-z). (b) Periodic attractors (x-w). (c)
Poincaré maps (y-z).

TABLE II: Lyapunov exponents of the periodic attractors.

Lyapunov exponents
λ1 λ2 λ3 λ4

Case (1) 0.000 0.000 −0.0267 −0.0268
Case (2) 0.000 0.000 −0.0345 −0.0347
Case (3) 0.000 0.000 −0.0015 −0.0807

Comparing the numerical simulation results of the periodic
attractors and the Lyapunov exponents, we obtain the one
periodic, the two periodic, and the three periodic attractors by
changing the one parameter of the memristor a. In addition,
Fig. 9 shows the one parameter bifurcation diagram.
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Fig. 9: One parameter bifurcation diagram. Initial conditions
(0, 0.001, 0, 0).

In Fig. 9, the periodic attractors are observed in the region
0.94 ≤ a ≤ 0.987. On the other hand, the chaotic attractors are
also observed in the region of 0.988 ≤ a ≤ 1.01. Therefore,
the one parameter bifurcation diagram is obtained.

C. Stable analysis

We investigate the stable state of the memristor–based
Bonhöeffer van der Pol oscillator. The equilibrium points are
obtained by letting dx/dτ = dy/dτ = dz/dτ = dw/dτ = 0.
The equilibrium state of Eq. (5) is given by set A =
{(x, y, z, w)|x = y = z = 0, w = p}. Here, p is constant.
The Jacobian matrix J at this equilibrium set is given by Eq.
(8).

J =


−αW (p) 0 −1 0

0 −β 1 0
1 −1 0 0
1 0 0 0

 . (8)

Here, W (p) = −a + 3bp2. The characteristic equation is
obtained from the determinant in Eq. (9).

det(J− ρE) = 0. (9)

Here, ρ is the eigenvalues, and E is an identity matrix. By
calculating the determinant in Eq. (9), we get the characteristic
equation of the memristor–based Bonhöeffer van der Pol
oscillator.

(a0ρk
3 + a1ρk

2 + a2ρk + a3)ρk = 0. (10)

The coefficients a0 = 1, a1 = αW (p)+β, a2 = αβW (p)+2,
a3 = αW (p)+β. From Eq. (10), the Jacobian matrix J has a
zero eigenvalue ρ1 and three nonzero eigenvalues ρ2, ρ3, ρ4.
The stable criterion of Eq. (10) is derived from the Hurwitz
criterion. a0 is positive, so Eq. (10) satisfies the following
criterion.

1) The coefficients a1, a2 and a3 are positive.
2) All the Hurwitz matrices D1, D2, and D3 are positive.

Therefore, the Hurwitz matrices D1, D2, and D3 are as
follows.

D1 = a1 > 0

D2 =

∣∣∣∣a1 a2
1 a3

∣∣∣∣ = a1a3 − a2 > 0

D3 =

∣∣∣∣∣∣
a1 a2 0
1 a3 0
0 a1 a3

∣∣∣∣∣∣ = a3(a1a2 − a3) > 0

. (11)

We set α = 1.46, β = 1.25, a = 1, b = 1/3. Therefore, the
stable criterion is obtained as follows.

|p| > 0.6724. (12)

In other word, the unstable criterion is shown in Eq. (13).

|p| < 0.6724. (13)

Table III shows the list of the three eigenvalues of Eq. (10).

TABLE III: The three nonzero eigenvalues ρk.

Eigenvalues ρk
|p| ρ2 ρ3 ρ4
0 0.5625 −0.1763− j

√
0.5850 −0.1763 + j

√
0.5850

0.6 −0.3703 0.02735− j
√
0.9228 0.02735 + j

√
0.9228

0.66 −0.4370 0.0055− j
√
0.9873 0.0055 + j

√
0.9873

0.6724 −0.4501 −j
√
1.0001 j

√
1.0001

0.68 −0.4580 −0.0035− j
√
1.0078 −0.0035 + j

√
1.0078

0.7 −0.4784 −0.0135− j
√
1.0277 −0.0135 + j

√
1.0277

j is the imaginary unit. In Tab. III, all the real parts of ρk are
negative in the region 0.6724 < |p| ≤ 0.7, which indicates
that the equilibrium set A is stable. On the other hand, at
least ρk has the positive real parts in the region 0 ≤ |p| <
0.6724, which indicates that the equilibrium set A is unstable.
Therefore, the stable criterion depends on the initial condition
of the memristor.

CONCLUSIONS

We proposed the memristor–based Bonhöeffer van der Pol
oscillator. First, we obtained the three types of the chaotic
attractors; one–scroll positive attractor, one–scroll negative
attractor, and two–scroll attractor by replacing the third-power
nonlinear resistor with the memristor. Second, the shape
of the chaotic attractors is characterized by the flux of the
memristor. Third, the periodic attractor; the one periodic, the
two periodic, and three periodic attractor are obtained, and
the one parameter bifurcation diagram occurs. Finally, the
stable analysis indicates that the stable and unstable criterion
depends on the initial condition of the memristor.

In the future, we would like to design the flux-controlled
third-power memristor model, and compare the results of
the numerical simulation results and those of the circuit
experiments to provide the fundamental evidences. In addition,
we would like to expand the scale of the circuit model, such
as the coupled memristor–based Bonohöeffer van der Pol
oscillator, and investigate the chaos synchronization to develop
the applications using the circuit network systems.
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