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Abstract— This paper presents an investigation into 

networked reservoir computing using interconnected oscillators. 

Specifically, the Bonhoeffer-van der Pol (BVP) oscillator is used 

as the basis for the reservoir, and its performance is evaluated 

in speech recognition tasks. The results reveal that the BVP 

reservoir exhibits enhanced fidelity to input waveforms and 

improved accuracy in speech recognition compared to the van 

der Pol (VDP) reservoir. Furthermore, the impact of reservoir 

configuration on accuracy is examined by varying the number 

of oscillators, the connection probability, and the coupling 

strength. The results indicate that accuracy improves as the 

parameters are increased. These results emphasize the 

importance of carefully selecting and setting the dynamics of the 

physical system and parameters of the reservoir to achieve 

optimal performance. 

Keywords— oscillator, reservoir computing, synchronization  

I. INTRODUCTION 

Recent advancements in AI (Artificial Intelligence), 

particularly deep learning, recurrent networks, and large-

scale language modeling, have led to profound breakthroughs 

across various applications such as speech recognition, image 

classification, and natural language processing [1]-[5]. 

However, these conventional AI models face challenges due 

to parameter tuning intricacies, learning costs, and electricity 

consumption [6]. These demands pose limitations on 

deploying AI systems in environments constrained by 

resources or on edge devices with restricted power and 

computational capacities. 

 Surprisingly, nature offers impressive examples of efficient 

computational systems. For instance, insects, despite their 

small brains, demonstrate the ability to navigate intricate 

environments, process sensory information, and display 

intelligent behaviors using limited computational resources 

[7]. This raises the question of whether there are alternative 

computational paradigms that can achieve high performance 

while being energy-efficient and resource-friendly. 

 Reservoir computing (RC) is one such paradigm. It is a 

method attracting significant attention in the AI domain, 

promising efficient and precise computations while reducing 

traditional AI models' energy and computational needs. RC 

has its origins in echo-state networks, a special model of 

recurrent neural networks [8], [9] and liquid-state machines 

based on neuroscientific findings [10]. Unlike conventional 

neural networks, which require extensive parameter tuning, it 

mainly requires only learning of the readout layer due to its 

inherent dynamics of nonlinear projection of inputs into a 

high-dimensional space. This unique feature echo-state 

simplifies learning while still delivering effective 

performance.  More interestingly, RC is not limited to neural 

networks, but has been implemented using a variety of 

physical systems, including water systems, optoelectronic 

devices, and photonic systems, and has attracted much 

attention in recent years [11]-[13]. While RC has exhibited 

promising results, our understanding of its potential and the 

optimal architectures for maximizing computational accuracy 

still have gaps. Future research should focus on exploring 

innovative reservoir designs, enhancing training algorithms, 

and investigating the fusion of reservoir computing with other 

AI techniques.  

This study delves into networked reservoir computing using 

oscillators as computational elements. Coupled oscillator 

models are not only engineering but also fundamental in 

modeling and analyzing the synchronization behavior of 

systems with rhythmic behavior, including systems in 

ecology, and neuroscience [14]-[17]. Among these, the 

synchronization phenomena of van der Pol oscillators, simple 

yet versatile coupled systems of nonlinear oscillators, have 

garnered considerable attention. This system can 

approximate various natural phenomena, enhancing its utility. 

FitzHugh and Nagumo in 1962 derived the BVP model as a 

simplified version of the Hodgkin-Huxley equation. The 

BVP equation, considered a reasonable extension of the VDP 

equation, can be realized in a circuit with simple passive 

elements and a single nonlinear conductor. Its simplicity 

often positions it as a fundamental oscillation unit to explain 

the behavior of the nervous system and circadian rhythms 

[18]-[20].  

Interestingly, compared to VDP, BVP exhibit a wide array 

of nonlinear phenomena, including limit cycles, equilibrium 

bifurcations, and hard oscillations. Therefore, we leverage 

the unique dynamics of oscillators for computational tasks 

and employ their synchronization properties for information 

processing. This study contrasts two different circuit 

configurations, VDP and BVP, as reservoirs to verify their 

performance in achieving superior calculation accuracy.  

 

II. RESERVOIR COMPUTING WITH OSCILLATOR CIRCUIT  

In this study, we present a novel approach for reservoir 

computing utilizing a networked configuration of 

interconnected oscillators. The proposed methodology 

harnesses the unique dynamics of oscillators to enable 

efficient and accurate computations. Fig. 1 provides an 

overview of the structure of the networked reservoir 

computing system. 
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Fig.1. Configuration of the proposed oscillator reservoir. 

 

To enable effective information processing, input signals 

are introduced into the oscillator network and propagated 

through the interconnections between the oscillators. The 

resulting output signals are obtained from multiple output 

terminals positioned within the network. Input signals are 

input by adjusting the strength of the connection between the 

input node and the reservoir layer. Data input to the oscillator 

network is mapped to a high-dimensional feature space to 

facilitate pattern recognition in readout. The oscillator 

network used in this study exhibits key properties that make 

it well-suited for reservoir computing. Firstly, it possesses 

nonlinear characteristics, enabling the network to capture and 

process complex input patterns. Additionally, the network 

operates in a high-dimensional space, enhancing its 

computational capacity and enabling the representation of 

intricate relationships within the data. Lastly, the network 

demonstrates short-term memory properties, enabling it to 

retain and utilize past information to inform current 

computations. It is important to note that the coupling 

strength within the reservoir layer is fixed throughout the 

computations. We also conducted a comparative analysis to 

evaluate the impact of coupling strength on the network's 

performance. Details of this analysis will be discussed later 

in the paper. The output signals of the network are obtained 

by measuring the voltage differences between each oscillator 

and a reference oscillator.  

Two different circuit configurations were utilized to assess 

the effectiveness of the proposed networked reservoir 

computing approach. The circuit models used in this study 

are shown below in Fig. 2. 

 
Fig.2. Circuit model (a)VDP. (b)BVP. 

 

First, the circuit equation for the VDP circuit is shown in 

Equation (1).  

{
 
 

 
 𝐶

𝑑𝑣𝑛

𝑑𝑡
= 𝑖𝐿 − 𝑖𝐺 −∑

1

𝑅
(𝑣𝑘 − 𝑣𝑛)

𝑁

𝑘=1

𝐿
𝑑𝑖𝑛
𝑑𝑡

= 𝑣𝑛

 (1) 

R represents the resistance value connecting the circuits. 

Normalize the circuit equations using the normalization 

parameters. The normalization parameters and the 

normalized circuit equations are shown in Eqs. (2), (3). 

 

{
 
 

 
 
𝑣 = √

𝑔1
𝑔3
𝑥  , 𝑖 = √

𝑔1𝐶
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{
 
 

 
 𝑑𝑥𝑛

𝑑𝜏
= 𝜀𝑥𝑛(1 − 𝑥𝑛

2) − 𝑦𝑛 −∑𝐾(𝑥𝑘 − 𝑥𝑛)

𝑁

𝑘=1

𝑑𝑦𝑛
𝑑𝜏

= 𝑥𝑛

 (3) 

 

In the computer simulations, we assume that the voltage 
and current characteristics of the nonlinear resistor in each 
oscillator are given as follows. 

𝑖𝑔 = −𝑔1𝑣 + 𝑔3𝑣
3 (4) 

(𝑔1,  𝑔3  >  0). 
 

 The circuit equation for the BVP circuit is shown in Eq. (5).  

 

{
 
 
 

 
 
 𝐶

𝑑𝑣𝐴𝑛
𝑑𝑡

= −𝑖𝐿 − 𝑖𝐺 −∑
1

𝑅
(𝑣𝐴𝑛 − 𝑣𝐴𝑘)

𝑁

𝑘=1

 

𝐶
𝑑𝑣𝐵𝑛
𝑑𝑡
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1

𝑟
𝑣𝐵

𝐶
𝑑𝑖𝐿𝑛
𝑑𝑡

= 𝑣𝐴 − 𝑣𝐵

 (5) 

R represents the resistance value connecting the circuits. 

Normalize the circuit equations using the normalization 

parameters as in VDP. The normalization parameters and the 

normalized circuit equations are shown in Eqs. (6), (7). 
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{
  
 

  
 𝑑𝑥𝑛

𝑑𝜏
= 𝜀𝑥𝑛(1 − 𝑥𝑛

2) − 𝑧𝑛 +∑𝐾(𝑥𝑘 − 𝑥𝑛)

𝑁

𝑘=1

𝑑𝑦𝑛
𝑑𝜏

= 𝑧𝑛 − 𝜎𝑦𝑛

𝑑𝑧𝑛
𝑑𝜏

= 𝑥𝑛 − 𝑦𝑛

 (7) 

 

N is the number of oscillators to be connected to. Also, K is 

coupling strength. 

 The tasks conducted in this study encompassed speech 

recognition. Detailed procedures for these tasks will be 

presented in the Results section. 

 

Simulation Method: 

For simulation purposes, the Runge-Kutta method was used, 

enabling accurate and efficient computation of the system 

dynamics. 

Learning Method: 

Ridge regression was used for the learning process. The aim 
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was to determine the optimal output weights to achieve desired 

performance. The output weights were determined using the 

equation: 

 Ŵout   =  D𝑋
𝑇(X 𝑋𝑇 +  βI)−1 (8) 

Here, Ŵout  refers to the output weights, 𝐷 represents the 

teacher signal matrix, 𝑋 is the output matrix of the reservoir, 

and 𝑋†  = 𝑋𝑇 (X𝑋𝑇)−1 denotes the pseudo-inverse of 𝑋. The 

parameter 𝛽 > 0 is the regularization parameter, and 𝐼 denotes 

the unit matrix. By including 𝛽 in the linear regression, 

overlearning is prevented. 

For the evaluation of the speech recognition task, the Word 

Error Rate (WER) metric was used. WER is a measure that 

quantifies the percentage of misclassifications in the 

recognized speech output compared to the ground truth. A 

lower WER indicates a higher level of accuracy in the speech 

recognition task. 

III. SIMULATION RESULTS 

A. Speech Recognition Task 

In the subsequent step, a speech recognition task was 

conducted. An overview diagram is shown in Fig. 3. 

 

 
Fig.3. Speech Recognition Overview. 

 

For the input dataset, a total of 500 data samples were 

utilized, consisting of recordings from five different speakers 

enunciating each of the numbers from zero to nine, repeated 

10 times. The input data used in this study is adapted from 

Lyon's auditory model. After removing the silent parts, the 

speech signal is transformed into a cochleargram 

representation. This conversion results in time series data 

with dimensions corresponding to different frequency 

channels. In our case, the cochleargram data is characterized 

by 77 dimensions, reflecting the spectral characteristics of the 

speech signal. The dataset was divided such that half of the 

data, encompassing five pronunciations of each number 

spoken by each of the five speakers, was allocated for training 

purposes, while the remaining data was reserved for testing 

[21]. Similar to the input waveform generation task, the initial 

transient response of 10,000τ was disregarded in this task as 

well. Since the available data was limited, no data was fed 

into the reservoir during the initial 10,000τ period, and the 

training and test data were introduced from 10,001τ onwards. 

The training process involved observing the output of the 

VDP and BVP reservoirs, as shown in Fig. 4, respectively. 

 

 
Fig.4. Output during training of the reservoir. (a) VDP. (b) 

BVP. The reservoir consists of N = 100, with a connection 

probability of 1.0 (indicating perfect coupling) in the 

reservoir layer. As parameter values, ε=0.1 and K=0.03 were 

used for the reservoir layer. Only 15 responses are listed for 

visibility. 

 

The ridge regularization parameter β was set to 1.0 for 

verification purposes. The outcomes of the speech 

recognition task are presented in Figs. 5 and 6. Also, the 

respective training and test errors (WER) are also shown in 

TABLE Ⅰ. 

 
Fig. 5. Confusion Matrix for Speech Recognition using VDP 

Reservoir (a) Training Prediction (b) Test Prediction. 

 

 
Fig. 6. Confusion Matrix for Speech Recognition using BVP 

Reservoir (a) Training Prediction (b) Test Prediction 

 

TABLE I.  ERROR EVALUATION OF SPEECH RECOGNITION TASK 
 VDP AND BVP (WER) 

 without reservoir VDP BVD 

train 0.7280 0.000 0.012 
test 0.7320 0.044 0.06 

 

  

Figure 4 demonstrates the input of the speech waveform at 

the 10000τ stage, and a comparison is made between the 

reservoir outputs of the VDP and BVP circuits. It is observed 

that the reservoir output of the VDP circuit does not fully 

reflect the input waveform, while the BVP circuit exhibits a 

better correspondence between the reservoir output and the 

input waveform. This difference in waveform representation 

is believed to have a direct impact on the accuracy of speech 
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recognition. This has also been confirmed in reservoirs using 

spin torque oscillators, and it has been confirmed that 

microwave application provides a quick response (fast 

relaxation) and improves reservoir performance [22].  

Furthermore, Figs. 5, 6 and TABLE Ⅰprovide clear evidence 

of the disparity in speech recognition results. Despite the 

similarity in experimental conditions, except for the 

differences in circuit configurations, a significant 

discrepancy in accuracy is observed. This indicates that the 

choice of the circuit has a profound influence on the overall 

performance and accuracy of the speech recognition task. 

These findings emphasize the importance of selecting the 

appropriate circuit architecture for specific applications, as 

different circuit configurations can lead to substantial 

variations in the accuracy and performance of cognitive tasks. 

Further investigation and analysis are necessary to 

understand the underlying factors contributing to these 

differences and optimize circuit designs for specific 

computational tasks. While the flexibility in material 

selection for reservoir computing holds great appeal, our 

results highlight the importance of meticulous material 

selection tailored to the specific task. This strategic selection 

of suitable materials in reservoir computing has the potential 

to significantly improve accuracy and overall performance in 

applications. 

B. Effect of Reservoir Configuration 

This section presents a comprehensive investigation into the 

accuracy of oscillator reservoirs, with a particular focus on 

their structural configurations. The reservoir utilized in this 

study adopts a network-type structure, offering distinct 

advantages compared to other types such as medium-based 

reservoirs (e.g., water [11]) or soft material reservoirs (e.g., 

octopus’ legs [23]). Specifically, the network structure allows 

for more precise design control over the reservoir layer. 

Building upon the BVP used in the previous chapter, we 

subjected the reservoir to a speech recognition task. 

The primary objective of this investigation was to assess 

how variations in the reservoir configuration impact accuracy. 

To achieve this, we examined the accuracy of speech 

recognition while manipulating key parameters such as the 

number of oscillators N, coupling strength K, and coupling 

probability P within the reservoir layer. The following 

section presents the results obtained from these experiments, 

shedding light on the relationship between reservoir 

configuration and accuracy. 

The results obtained from the experiments reveal important 

insights into the relationship between reservoir configuration 

and accuracy. Fig. 7 (a) shows that as N increases, the 

accuracy of the reservoir improves. This trend is particularly 

evident, showing significant enhancements in accuracy up to 

a certain point, approximately N=125. Additionally, Fig. 8 (b) 

highlights the influence of connection probability on 

accuracy during both the learning and verification stages. It 

demonstrates that a higher connection probability leads to 

improved accuracy in the reservoir's performance. 

Furthermore, Fig. 7 (c) demonstrates that increasing K also 

contributes to enhanced accuracy, albeit to a lesser extent 

compared to the impact of N and P. These findings 

underscore the significance of reservoir configuration in 

achieving optimal accuracy levels for the speech recognition 

task. 

 
Fig. 7. Accuracy of the speech recognition task in BVP 

reservoirs with different configurations. We take the average 

of the three times WERs. (a) Variation of the number of 

oscillators N, (b) Variation of the coupling probability P, (c) 

variation of the coupling strength K. 

C. Overall Assessment of Results 

Using BVP instead of VDP improved accuracy in the task. 

We consider there are two reasons for this. One reason, as 

mentioned earlier, is that BVP exhibits a fast response and 

adequately reproduces the input wave during output. 

Another reason is attributed to obtaining responses at the 

edge of chaos. BVP exhibits both periodic and chaotic 

solutions depending on the parameters. This condition aligns 

well with the desirable properties of a reservoir that performs 

better at the edge of chaos. The results, where accuracy 

improved when varying the parameters shown in Fig. 8, 

suggest that the circuit's response has approached closer to 

the edge of chaos. 

 

IV. CONCLUSIONS 

We have investigated the accuracy and performance of 

networked reservoirs using interconnected oscillators. The 

proposed approach offers advantages in terms of flexible 

reservoir layer design compared to other types of reservoirs. 

Specifically, we focused on the BVP oscillator as the physical 

system and conducted the task of speech recognition. 

Increasing the number of oscillators (N) and the coupling 

probability (P) led to improved accuracy in the speech 

recognition task. Although the effect of varying the coupling 

strength (K) on accuracy was less pronounced compared to N 

and P, it still contributed to improved performance. These 

findings highlight the importance of careful selection and 

configuration of parameters for achieving higher accuracy in 

reservoir computing tasks. The flexibility in designing the 

reservoir structure offers potential for further advancements 

in the field. Furthermore, the results from our study 

emphasize the significance of considering the structural 

characteristics of the reservoir when designing efficient and 

accurate reservoir computing systems. 

Overall, our research contributes to the understanding of 

networked reservoirs and their applications in artificial 

intelligence. The insights gained from this study can inform 

the development of more efficient and high-performing 

computing systems, paving the way for advancements in 

cognitive computing and machine learning. 
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