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Abstract—We investigate neural activity of the neural network
including delayed couplings by using attractor reconstruction
images. The paper presents the effects on neural activity when
the value and distribution of delayed coupling is changed. In
particular, we focus on the complexity of attractor images
and evaluate the relationship between delayed coupling and
complexity.

I. INTRODUCTION

In the field of neuroscience, several types of neuronal activ-
ity measurement devices equipped with high-density electrode
array have been developed [1]- [3]. With the development
of these technologies, it has become possible to obtain more
accurate data on neural activity in brains of Wistar rats and
other animals [4]. Typically, neural activity data from the brain
is obtained in the form of a raster plot, a graph that represents
the activity patterns of neurons. Standard analysis methods
include focusing on areas where many neurons are spiking
simultaneously, calculating the synchronization rate of spikes,
and investigating the distribution between spikes [5]. These
analytical methods are important for evaluating the state of
neural activity in the brain.

There have been many investigations of neural activity in
networks using mathematical models as a modeling of brain
network function. In Ref. [6], the authors have reported that
the interaction of delay and STDP causes spiking neurons to
spontaneously self-organize into groups, generating a pattern
of canonical polysynchronous activity. Another study investi-
gated the relationship between neuronal synchronization and
excitatory and inhibitory conduction in a neuronal network
consisting of adaptive integrating firing neurons [7].

As a feature extraction and visualization of neuronal activ-
ity, a method that converts raster plots obtained from Wistar rat
brain to time series data and using attractor reconstraction has
been proposed [8]. In addition, it has been shown that attractor
reconstruction can also be used for neuronal activity obtained
from the coupled system of the Izikevich neuronal model to
characterize the network [9], [10]. The analysis methods for
neural activity patterns so far have mostly been linear, however

the proposed approach here is a new attempt using nonlinear
methods. Since neural activity patterns exhibit highly complex
features, it is believed that non-linear analysis is effective.

In this study, we investigate how attractor reconstruction
is affected when delayed coupling is added to the Izikevich
neuron coupling system. By using the computer simulations,
we found that the pattern of neuronal activity changes with the
size and distribution of the delayed couplings. In particular, the
variety of delayed couplings is important for the complexity
of neuronal activity.

II. NEURON AND NETWORK MODELS

The Izikevich neuron model which is described by a second-
order differential equation Eq. (1) is used.{

v̇ = 0.04v2 + 5v + 140− u+ Iex

u̇ = a(bv − u)
(1)

if v > 30 mV, then v ← c and u ← u+ d.
Where v corresponds the membrane potential of the neuron,

u corresponds a slow membrane recovery variable, accounting
for the activation of K+ ion currents and inactivation of Na+

ion currents. Iex denotes the excitatory input current. The
parameters of the excitatory neurons (Regular Spike type) are
fixed with a=0.02, b=0.2, c=-55 and d=8. The parameters of
the inhibitory neurons (Frast Spike type) are fixed with a=0.1,
b=0.2, c=-55 and d=2. In this case, 1,000 neurons are coupled
randomly with coupling probability p = 0.1. The ratio of
excitability and inhibitory neuron is 0.8 and 0.2, respectively.

III. ATTRACTOR RECONSTRUCTION

The attractor of dynamical systems can be reconstructed
topologically in the embedding space from Takens’ theo-
rem [11]. The state vectors in the reconstructed m-dimensional
embedding space are defined by

y(t) = x(t), x(t+ τ), ..., x(t+ (m− 1)τ) (2)

where x(t) means a scalar time series and τ is the delay time.

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
C

irc
ui

ts
 a

nd
 S

ys
te

m
s (

IS
C

A
S)

 | 
97

9-
8-

35
03

-3
09

9-
1/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IS
C

A
S5

87
44

.2
02

4.
10

55
78

36

Authorized licensed use limited to: Yoshifumi Nishio. Downloaded on August 08,2024 at 08:35:16 UTC from IEEE Xplore.  Restrictions apply. 



IV. SIMULATION RESULTS

A. Without Delayed Couplings

First, we investigate neuronal activity in the neural network
without delayed couplings. Figure 1 shows the simulation
results of the raster plot and spike rate during 1,000 [ms].
It was observed that the pattern of many neurons firing
simultaneously at intervals of 100 to 200 [ms]. The time series
of spike rates shows that the peaks appear irregularly and their
peak values are not constant.

Fig. 1. Raster plot and spike rate without delayed couplings.

Action potentials of three randomly selected neurons are
shown in Fig. 2. Two neurons behave in regular spikes,
however one neuron produces bursting at some intervals.

The attractor obtained by applying the attractor recon-
struction to the spike rate time series is shown in Fig. 3.
The attractor trajectories are not random, but have a certain
structure and complexity for small values.

Fig. 2. Examples of three neuronal activities without delayed couplings.
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Fig. 3. Reconstracted attractor without delayed couplings (τ=10).

B. Constant Delayed Couplings

Simulation results for the case all excitatory coupling delays
were set to the same value are shown in Figs. 4 and 5. In this
case, all delays of inhibitory coupling were fixed at 3 [ms].

When the delay is 1 [ms], Fig. 4(a) shows that the per-
centage of neurons that fire simultaneously is large. And the
interval of their firing timing is longer than when there is
no delay. The action potentials of the neurons show that the

three neurons are nearly synchronized (Fig. 5(a)). While, the
case of delay is 5 [ms], Fig. 4(b) shows that the percentage
of neurons that fire simultaneously is small. Three neurons
are not synchronized as shown in Fig. 5(b). As the delay
time becomes even longer, the spike timing becomes more
periodic (Fig. 4(c) and (d)). Neuron activities are also nearly
synchronous as shown in Figs. 5 (c) and (d).

Figure 6 shows the reconstructed attractors depending on
the delay time. When the delay is 1 [ms], the shape of the
attractor is similar to that without delay. The size of the
attractor increases, and the complexity seems to be slightly
weaker. When the delay is 5 ms, the attractor size is smaller
and the complexity is stronger. If the delay is 10 or 12 [ms],
the attractor orbit becomes nearly periodic. The size of the
attractor is larger with a delay of 12 [ms]. In other words,
many neurons fire at the same time.

(a) Delay time: 1 [ms].

(b) Delay time: 5 [ms].

(c) Delay time: 10 [ms].

(d) Delay time: 12 [ms].

Fig. 4. Raster plot and spike rate with constant delayed couplings.

Figure 7 shows the average spike rates when the delayed
coupling time is changed from 0 to 13 [ms]. This result is
the average of 10 different networks with different coupling
patterns. The average spike rate is larger once when there is
a 1 [ms] delay than without delay, however the average spike
rate becomes smaller when the delay is longer than 2 [ms].
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(a) Delay time: 1 [ms]. (b) Delay time: 5 [ms].

(c) Delay time: 10 [ms]. (d) Delay time: 12 [ms].

Fig. 5. Examples of three neuronal activities with constant delayed couplings.
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(a) Delay time: 1 [ms]. (b) Delay time: 5 [ms].

 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

x + 2*tau

"re_att_d=10ms.dat"

x

x + tau

x + 2*tau

 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600 0
 200

 400
 600

 800
 1000

 1200
 1400

 1600

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

x + 2*tau

"re_att_d=12ms.dat"

x

x + tau

x + 2*tau

(c) Delay time: 10 [ms]. (d) Delay time: 12 [ms].

Fig. 6. Reconstracted attractors with constant delay couplings.

Then, when the delay is more than 9 [ms], the average spike
rate is again larger than without delay. This may be due to
an increase in the proportion of synchronous neurons as the
delay time becomes longer.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10  12  14

A
v
e
. 
fi
ri
n
g
 s

p
ik

e
 r

a
te

 [
H

z
]

Delay time [ms]

Ave. firing spike rate

Min value of firing spike rate

Max value of firing spike rate

Fig. 7. Average of spike rate without delay couplings.

C. Distributed Delayed Couplings

Next, we investigate the case of four distributions of delyed
couplings. Four distributions is shown in Fig. 8. The horizontal
axis represents the time delay and the vertical axis represents
the number of couplings. Distribution A is a uniform distri-
bution. Distribution B is a normal distribution. Distribution
C is a distribution with many couplings of short and long
delays. Distribution D has the highest number of couplings
for short delays, and the number of couplings decreases for
longer delays.
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(a) Distribution A. (b) Distribution B.

 0

 5000

 10000

 15000

 20000

 25000

 4  5  6  7  8  9  10  11  12  13

N
u
m

b
e
r 

o
f 
c
o
u
p
lin

g
s

Delay time [ms]

 0

 5000

 10000

 15000

 20000

 25000

 4  5  6  7  8  9  10  11  12  13

N
u
m

b
e
r 

o
f 
c
o
u
p
lin

g
s

Delay time [ms]

(c) Distribution C. (d) Distribution D.

Fig. 8. Four patterns of distributed delayed couplings.

The simulation results of raster plot and spike rate depend-
ing on the coupling distributions are shown in Figs. 9. In
the case of Distribution A, the spike firing peaks are observed
at intervals of about 200 [ms]. In the case of Distribution B,
similar to A, spike firing peaks are observed at about 200
[ms] intervals, and occasionally the spike rate peaks are high.
In cases C and D, the peak period of spike rates is broken
compared to the case without delay.

Figure 10 shows the neuronal activities of three neurons
selected randamly. In all cases, we see that there are regular
and burst spiking neurons.

Figure 11 shows the reconstructed attractors depending on
the delay distributions. It can be seen that case of Distribution
B has the largest attractor size. In all other cases, the attractor
size is about the same. With regarding complexity, the com-
plexity is stronger in cases Distributions A, C, and D compared
to without delay, and it is weaker in case of Distribution B.

The average spike rate with four different distributed de-
layed couplings are summarized in Table I. This result is
the average of 10 different networks with different coupling
patterns. It can be seen that the delayed coupling reduces the
mean spike rates for all distributions compared to without
delay case.

Authorized licensed use limited to: Yoshifumi Nishio. Downloaded on August 08,2024 at 08:35:16 UTC from IEEE Xplore.  Restrictions apply. 



(a) Distribution A.

(b) Distribution B.

(c) Distribution C.

(d) Distribution D.

Fig. 9. Raster plot and spike rate with distributed delayed couplings.

(a) Distribution A. (b) Distribution B.

(c) Distribution C. (d) Distribution D.

Fig. 10. Examples of three neuronal activities with distributed delayed
couplings.

TABLE I
AVERAGE SPIKE RATE WITH DISTRIBUTED DELAY COUPLINGS

Distribution type Ave. Min Max
A 35.80 30.77 40.77
B 37.83 30.12 46.90
C 36.14 31.21 40.15
D 38.55 31.90 44.05

Without Delay 46.97 35.05 60.41
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(a) Distribution A. (b) Distribution B.
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Fig. 11. Reconstracted attractors with distributed delay couplings.

V. CONCLUSION

We investigated how delayed coupling affects the activity
patterns of neurons using images of reconstructed attractors.
We showed the simulation results of raster plot, spike rate
and neuronal activities. Then we apply attractor reconstruction
method to spike rate time series. In particular, the evaluation
focused on attractor size and complexity compared to without
delay. First, in the case of that delay is constant, the attractor
size becomes larger when delay time is 1 [ms]. The complexity
of attractor becomes stronger when delay time is 5 [ms]. The
complexity becomes weak when the delay time is longer than
10 [ms]. Next, in the case of the four distributed delayed cou-
pling, attractor size became smaller in all cases. In complexity,
we found that complexity holds in all three cases except for
the normal distribution. These findings indicate that delayed
coupling has a significant effect on neuronal activity. We also
confirmed that the diversity of delayed couplings is important
for maintaining complexity.

As the part of future work, complexity must first be quan-
titatively evaluated. One possible way is that we use Poincare
cross sections. Also, since we did not focus on synchronization
of neurons in this study, the effect of delayed coupling on
synchronization should be investigated. Furthermore, while
this study applied nonlinear analysis to the neural activity
patterns of mathematical models, in the future, we aim to ex-
tract new features from actual neuron signals from a nonlinear
perspective.
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