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Abstract

This study investigates the synchronization phenomena when

the weights of coupled chaotic circuit networks are learned.

In contrast to previous approaches using voltage differences

of capacitors for synchronization detection, we employ phase

differences in this study. This enables more accurate weight

learning based on precise synchronization detection. We ex-

plore how synchronization phenomena and weights change

with and without weight learning.

1. Introduction

Synchronization phenomena in nonlinear circuit networks

exhibit intriguing phenomena such as N -phase synchro-

nization, oscillation quenching, and independent oscillation.

These phenomena hold promise for applications in modeling

and controlling high-dimensional nonlinear systems. In par-

ticular, chaos theory is applied in biomedical engineering for

the analysis of physiological signals such as heart rate vari-

ability and brain waves. This contributes to the understand-

ing of the complex dynamics of biological systems and plays

a role in the development of medical diagnostics and treat-

ment methods. The fundamentals of chaotic synchronization

have been studied with regard to the geometry and stability

of synchronization [1], [2]. Examples of applications using

chaos synchronization include secure communication and im-

age encryption [3], [4].

As part of our previous research, we have investigated clus-

tering using synchronization in coupled chaotic circuit net-

works [5]-[7]. Placing chaotic circuits on a two-dimensional

plane and reflecting the distance between chaotic circuits in

the magnitude of coupling allows for efficient clustering. Ad-

ditionally, for more advanced clustering, we have confirmed

the effectiveness of altering coupling weights using learning

rules. In Refs. [6] , [7], the method for synchronization de-

tection involves using the voltage difference between coupled

chaotic circuits. However, in synchronization detection for

chaotic coupling systems, using phase rather than voltage dif-

ference enables more accurate synchronization measurement.

Therefore, in this study, we investigate the behavior of

coupled chaotic circuit networks by employing phase-based

synchronization detection. Take one chaotic circuit as the

reference circuit and calculate the phase difference using a

Poincare section. First, we examine the synchronization rate

of the entire network, and furthermore, we investigate how

the distribution of weights changes by utilizing learning rules.

2. Chaotic Circuits Model

Figure 1 shows the chaotic circuit model that has been in-

vestigated in the literature [8]-[10]. This circuit consists of

three memory elements, one linear negative resistance ele-

ment, and one nonlinear resistance element consisting of two

diodes. The negative resistance is realized using the linear

region of a negative impedance converter made from an oper-

ational amplifier.

(a) Chaotic circuit. (b) Chaotic attractor.

Figure 1: Chaotic circuit model.

The approximate I − V characteristics of the nonlinear

resistance element are indicated by the following equation,

where the parameter rd is the slope of the nonlinear resis-

tance.
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By changing the variables, such that

i1 =

√

C

L1

V x; i2 =

√
L1C

L2

V y; v = V z;

r

√

C

L1

= α;
L1

L2

= β; rd

√
L1C

L2

= δ; t =
√

L1Cτ (2)

The normalzied equations represent the circuit equations

when all the chaotic circuits are coupled globally with each

other (all-to-all coupling).
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where f(y) is described as follows:
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In the computer simulations, we set the parameters to be

α = 0.460, β = 3.0 and δ = 470. The characteristic function

f(y) can be described as a three-segment piecewise-linear

function. In this study, the value of γij reflects the distance

between the circuits in an inverse manner, as described using

the following equation:

γij =
g

(dij)2
. (5)

Here, dij denotes the Euclidean distance between the i−th

circuit and the j − th circuit, while g is a scaling parameter

that determines the coupling strengths.

3. Circuit Arrangement and Learning Process

Figure 2 shows an example of the arrangement of 100

chaos circuits. This is generated by a Gaussian distribution

with a parameter σ = 0.7. In the simulation, investigations

are conducted for five different networks.

Next, we explain about learning process of coupled chaotic

circuits networks. A flowchart of these steps is shown in

Fig. 3.

We apply this Hebbian rule to chaotic circuit synchroniza-

tion. In other words, the coupling between the synchronized

chaotic circuits is made stronger, and the coupling between

the un-synchronized chaotic circuits is made weaker. The

Hebbian rule is applied to the chaotic circuits network as fol-

lowing steps.
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Figure 2: One example of circuit arrangement in 2-

dimensional space (N = 100, σ=0.7).

[step-1] At the initial state, all nodes are fully connected with

coupling strengths depending on distance.

[step-2] After a transient phase, we apply two rules for a se-

quence of generations. Each generation has length G = 10.

• (Determination of synchronization:) In order to deter-

mine whether two nodes are alike, we calculate the syn-

chronization ratio for every pair of oscillators. If the syn-

chronization ratio is larger than 80%, the corresponding

coupling strength becomes stronger with ∆γ = 1e−6.

In order to analyze the synchronization ratio, we define

a synchronization state by calculating phase difference

as

|θk − θn| < 20◦ (k ∈ Sn)

[step-3] Step-2 is repeated until iterations are reached (G =
2000).

[step-4] At the final state (G = 2000), we check the synchro-

nization ratio for every pair of oscillators.

Here, two learning methods are considered. One method

involves increasing the weights for synchronized connections

and decreasing the weights for unsynchronized connections

(Learning − PM). The other method involves increasing

the weights only for synchronized connections without de-

creasing the weights (Learning − P). The differences be-

tween the two learning methods is also investigated.

4. Simulation Results

First, we investigate the average synchronization rate of the

entire circuit and the number of connections with synchro-

nization exceeding 80 percent. The average results for five

different networks are summarized in Table 1. Focusing on

the average synchronization rate, it is observed that without

weight learning, the rate is 67.7 %. On the other hand, both

methods with learning show an improvement in synchroniza-

tion rates. Furthermore, when comparing Learning-PM and

Learning-P, it is evident that Learning-P achieves a higher
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phase differences: θ < 20 degree
synchronization ratio > 80%

synchronization edge: γ +=1e-6

un-synchronization edge: γ -=1e-6

Start

End

G < 2000

Runge-Kutta

G%10==0

Applying
Learning

Yes

No

G++

1) Determination of synchronization

2) Updating the weights

3) Updating the generation

Figure 3: Flowchart of learning process.

synchronization rate. Similarly, the number of highly syn-

chronized connections is more than three times greater with

weight learning compared to no learning. The results indi-

cate that learning weights enhances the synchronization rate.

The higher synchronization rate observed with Learning-P is

attributed to its lack of an effect reducing the size of connec-

tions with low synchronization rates.

Table 1: Synchronization rate and high-synchronized edges

Average of Number of

sync. rate [%] high-sync. edges

No-learning 67.70 1301.4

Learning-PM 75.13 3122.6

Learning-P 83.91 3862.6

Next, we investigated the synchronization rate distribution

of each edge within the circuit network. The simulation re-

sults are presented in Fig. 4, where the horizontal axis repre-

sents the synchronization rate, and the vertical axis represents

the number of edges. In the case of no learning, it can be ob-

served that there is a peak at 70 % synchronization rate. For

Learning-PM, the peak has increased to 80 % and it is notable

that the synchronization rates around 10 are higher compared

to the case with no learning. In the case of Learning-P, the

peak is at 80 %, indicating the absence of edges with low

synchronization rates.

Figure 5 shows the distribution of weights value. In this

proposed circuit system, the weight value is determined by

the distance between two chaotic circuits. We investigate the

effect of learning by checking the change of distribution of

weights. In the case of no-learning, most of weights has small

values. By using learning process, the peak of distribution is

shifted to around 0.002. The difference between Learning-

PM and Leraning-P is that there are not may small weights

for Learning-P.
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(a) No-learning. (b) Learning-PM.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  20  40  60  80  100

N
um

be
r 

of
 e

dg
es

Synchronization rate [%]

(c) Learning-P.

Figure 4: Distribution of synchronized edges.
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Figure 5: Distribution of weight value.
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Next, we consider the timing of learning process. The sim-

ulation results of synchronization rate and number of high-

synchronized edges depending on timing of learning process

are shown in Figs. 6 and 7, respectively. This is the average

result of five different networks. From these figures, we can

confirm that if number of applying learning is large, the syn-

chronization rate and the number of high-synchronized edges

are also high value.
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Figure 6: Synchronization rate depending on timing of learn-

ing process.
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Figure 7: High-synchronized edges depending on timing of

learning process.

5. Conclusion

In this study, we have investigated the characteristics of

the proposed chaotic circuits networks with learning by fo-

cusing on synchronization rate and weight value. By using

the computer simulations, we have confirmed that in the case

of synchronization rate, the peak of distribution becomes two

peaks by applying Learning-PM. In the case of weight value,

the distribution form is changed from power distribution to

normal distribution.

As future works, we would like to propose more effective

learning method by using neuro science phenomena such as

STDP coupling.
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