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Abstract— In this study, we investigate an effect of frustra-
tion to triangular oscillatory network with strong coupling.
Frustration as environmental factor is occurred by network
topology which is composed from polygonal structure. We
focus on the amplitude change of the proposed network us-
ing different frustration levels. By using computer simula-
tions, the effect of frustration to triangular oscillatory net-
works with strong coupling is shown.

1. Introduction

Synchronization phenomena observed in coupled oscil-
latory systems are excellent for modeling high-dimensional
nonlinear phenomena. In recent years, the synchroniza-
tion phenomenon of oscillators and nonlinear circuits in
related with complex networks has been the subject of sig-
nificant research [1]-[10]. These research results are also
expected to be used for engineering applications, such as
the constructions of optimum communication transmission
networks [11].

Our research group has been studying synchronization
phenomena observed in polygonal networks using coupled
oscillators [12]. The proposed model is that two odd poly-
gons are shared by a single branch. Because two adjacent
oscillators are coupled to be anti-phase states, the dilemma
frustrates the oscillators in odd numbered polygonal net-
works. In our previous works, we have investigated the
amplitude and phase changes in polygonal oscillatory net-
works when the coupling strength is changed. These am-
plitude and phase have also been solved by using numerical
analysis of the averaging method, and the amplitude death
has been observed.

In order to approach a more realistic network models,
we extend the two coupled polygonal network model to
two-dimensional space using 20 oscillators. The coupling
topology is to be a triangulra network, and we investigate
the ampliutde change with strong coupling. By using the
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computer simulations, we confrim that frastration changes
depnding on the location of the oscillator.

2. Network Model using van der Pol Oscillators

The conceptual network models with different frustra-
tion levels used in this study is shown in Fig. 1. In this
figure, triangular oscillators are coupled with edges on 2-
dimensional space and a circle denotes a van der Pol oscil-
lator.
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Figure 1: Network model with triangular oscillators.

Figure 2 shows a van der Pol oscillator. This oscillator is
composed by an inductor, a negative resistance and a con-
denser. The oscillator component is very simple, however
the oscillator could generate oscillation time wave. When
the parameter of the nonlinearity is set to small value (e.g.
ε=0.1), time wave form behaves similar to sin wave.

The circuit realization (target on 1st, 5th and 6th oscilla-
tors) of triangular oscillatory networks is shown in Fig. 3.
In this circuit model, we use unique coupling method for
two adjacent oscillators. Two adjacent oscillators are cou-
pled by a resistor via a inductor which originally belongs
to each van der Pol oscillators. The inductor of one van
der Oscillator is divided to six to connect the next oscilla-
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tors. If the oscillators are located at boundary position, the
inductors connect to the earth resistance via resistor R.

By using this coupling scheme, two oscillators tend to
synchronize at anti-phase state. However, in the triangu-
lar oscillatory network, two oscillators can not synchro-
nized with anti-phase state because of the network struc-
ture. Then, the coupled oscillators synchronize with phase
difference to minimize the enegy consumption. This is re-
ally original part compared with the other networks focus-
ing on synchronization.
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Figure 2: van der Pol oscillator.

6L

6L

6L

C

iR5

v5

C

iR6

v6

rm rm

C

R1

v1

i

5th oscillator

R

6L

R

6L

rm

6L

rm

6L
rm

6L
rm

6th oscillator

1st 
oscillator

6L6L

R

6L6L

6L 6L

6L6L 6L

R

RR

R

R

R

6L

Figure 3: Circuit realization for 1st, 5th and 6th oscillators
in Fig. 1.

We develop the expression of the circuit equations of this
model. The vk − iRk characteristics of the nonlinear resis-
tor are assumed to be the following third order polynomial
equation;

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (k = 1, 2, 3, 4). (1)

By using the variables and the parameters,
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The normalized circuit equations governing the circuit are
expressed as
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In these equations, γ is the coupling strength, ε denotes the
nonlinearity of the oscillators. For the computer simula-
tions, we calculate Eq. (3) using the fourth-order Runge-
Kutta method with the step size h = 0.005. The parameters
of this circuit model are fixed as ε = 0.1 and η = 0.0001.

3. Simulation Results

For the computer simulations, 20 van der Pol oscilla-
tors are coupled in triangular oscillatory space like Fig. 1.
By changing the coupling strength (γ) the network, the ob-
tained amplitude of coupled oscillators are investigated.

Figures 4 to 8 show the simulation results of the obtained
amplitude when the coupling strength is changed from 0.1
to 30.0. In the case of the weak coupling, the amplitude
of all oscillators are the same (see. Fig. 4). By increas-
ing the coupling strength, first, the amplitude of 6th, 11th
and 14th oscillators decreases (see. Fig. 5). Then, the am-
plitude death of 11th oscillator can be confirmed when the
coupling strength is set to γ = 2.6 (see. Fig. 6).

Figure 4: Attractors of 20 oscillators coupling network
(γ = 0.1).

– 349 –



Figure 5: Attractors of 20 oscillators coupling network
(γ = 1.0).

Figure 6: Attractors of 20 oscillators coupling network
(γ = 2.6).

When the coupling strength is further increased, the am-
plitude of the oscillators located in the middle is reduced
(see. Fig. 7). Finally, it is confirmed that the oscillators
located on the outer side of the system produce torus-like
oscillations (see. Fig. 8). In this network model, we con-
firm only the partial amplitude death and could not observe
the amplitude death of whole network.

Next, we investigate the time wave forms of 20 oscilla-
tors when the coupling strength is set to very large as shown
in Figs. 9 and 10. In the case of γ = 10.0, it responds to
frustration with a decrease in the amplitude of the inner os-
cillators and the variation in the amplitude of the outer os-
cillators. In the case of γ = 30.0, it responds to frustration
by producing like a torus attractor in the outer oscillators.

4. Conclusions

In this study, we have investigated the effect of frustra-
tion to triangular oscillatory network with strong coupling.
Frustration as environmental factor is occurred by network
topology which is composed from polygonal structure. We

Figure 7: Attractors of 20 oscillators coupling network
(γ = 10.0).

Figure 8: Attractors of 20 oscillators coupling network
(γ = 30.0).

investigated on the amplitude change of the proposed net-
work using different frustration levels. By using computer
simulations, we confirm that the effect of frustration to tri-
angular oscillatory networks with strong coupling.

For the future works, we need to investigate the phase
states at various frustration levels. Increasing the number
of oscillators and investigating the case of larger networks
is also one of a future task.
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Figure 9: Time wave forms of 20 oscillators coupling network (γ = 10.0).
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Figure 10: Time wave forms of 20 oscillators coupling network (γ = 30.0).
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