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Abstract– In this study, we proposed a new method of het-

ero-associative memory using the synchronization phenom-

enon of hierarchically connected van der Pol oscillators. As 

a result, we confirmed that the model can be configured 

with any number of oscillators for input and output. We also 

confirmed that this model has noise correction capability as 

well as an auto-associative memory model. In this study, we 

measured the noise correction capability of the proposed 

model and further examined its storage capacity. 

 

1. Introduction 

 

In nature, various synchronous phenomena exist, such as 

the luminescence of fireflies and the movement of pendu-

lums. Similarly, synchronization phenomena based on 

phase differences have been observed in coupled oscillator 

systems [1]. Interestingly, it has been proven that pattern 

recognition and associative memory can be realized by uti-

lizing the synchronization phenomena of oscillators [2]-[4]. 

This method differs from the currently widely used Neu-

mann-type computers, which perform retrieval of stored in-

formation by inputting information similar to the stored in-

formation. Since the elements perform operations in paral-

lel at this time, the robustness of the elements and savings 

in the number of operations are expected.   

Therefore, our previous work proposed to realize pattern 

recognition and associative memory of images by adding a 

new memory matrix based on association to the coupling 

strength between van der Pol oscillators [5]-[6]. There are 

two patterns of associative memory depending on the pair 

of input and output patterns to be stored. One is when the 

input and output patterns are the same, this associative 

memory is called auto-associative memory. The other is 

when the input and output patterns are different, and this 

associative memory is called hetero-associative memory. 

Hetero-associative memory is realized by forming a 

memory matrix with different pattern pairs of input and out-

put patterns. In our previous work, we proposed a hetero-

associative memory model based on the synchronization 

phenomenon of van der Pol oscillators [7]. However, this 

model uses the same oscillator for input and output. As a 

result, there is a restriction that the same number of oscil-

lators must be used for input and output. Therefore, we 

propose a new hierarchical mutual recall associative 

memory model consisting of an input layer and an output 

layer using van der Pol oscillators.   

Furthermore, this model can correct noise as well as the 

auto-associative memory model. Therefore, we numeri-

cally evaluate the recall patterns when noise is inserted into 

the input patterns in Section IV.  

We also evaluate the recall rate when the number of pat-

terns to be memorized is increased, and investigate the re-

lationship between the recall rate and the time to complete 

recall. This is discussed in Section V. 

 

2. Hierarchical Hetero Associative Memory by van der 

Pol Oscillators 

 

In this section, we explain the proposed model. 

First of all, Fig. 1 shows the previous study's hetero-asso-

ciative memory model. Each cell consists of van der Pol 

oscillators, and all oscillators are coupled to each other via 

resistors. Proper setting of the coupling strength based on 

the input pattern and the pattern to be stored enables pattern 

recognition and recall. In this model, we confirmed that dif-

ferent patterns can be recalled at the input and output. How-

ever, it has the limitation that the same number of oscilla-

tors must be used for input and output because the same 

oscillator coupling system is used for input and output. 

 

 
 

Figure 1: Associative memory model with mutually cou-

pled oscillators. 

 

Therefore, we propose a hetero-associative memory 

model with hierarchically connected van der Pol oscillators, 

as shown in Fig. 2 In this model, each cell consists of a van 

der Pol oscillator. In the input layer, each oscillator is mu-

tually coupled as in previous studies. Furthermore, this 

model has an output layer, where each oscillator in the input 

layer is coupled to all oscillators in the output layer. This 

hierarchical structure allows the use of different numbers 

of patterns for inputs and outputs. 
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Figure 2: Hierarchical structure model consisting of input 

and output layers. 

 

The normalized circuit equations are described as fol-

lows. 

{
 
 

 
 𝑑𝑥𝑛
𝑑𝜏

= 𝜀𝑥𝑛(1 − 𝑥𝑛
2) − 𝑦𝑛 −∑𝑲(𝑥𝑛 − 𝑥𝑘)

𝑁

𝑘=1

𝑑𝑦𝑛
𝑑𝜏

= 𝑥𝑛

 (1) 

N is the number of oscillators to be connected to. Also, K 

is defined as 

𝑲 = {
𝑬𝟎 × 𝑠
𝑬 × 𝑠

 (2) 

 

s is the coupling strength, and 𝐸0 and E are the accumula-

tion matrices determined based on the input and output 

sides of the storage pattern. Pattern creation was performed 

with black as -1 and white as 1. Let 𝑥𝑖 denote the input pat-

tern, 𝑎𝑖 the input side of the storage pattern, and 𝑏𝑖 the out-

put side of the storage pattern. 

 

𝒙𝒊 = (𝒙𝟏, 𝒙𝟐, 𝒙𝟑,⋯ , 𝒙𝑵) (3) 
 

𝒂𝒊 = (𝒂𝟏, 𝒂𝟐, 𝒂𝟑,⋯ , 𝒂𝑵) (4) 
 

𝒃𝒊 = (𝒃𝟏, 𝒃𝟐, 𝒃𝟑,⋯ , 𝒃𝑵) (5) 
Taking Figure 3 as an example, 𝑎𝑖 corresponds to the in-

puts, “dog” and “flower”, and 𝑏𝑖 corresponds to the out-

puts, “D” and “F”. Using these, a memory matrix can be 

created as shown in Eq. (7). Also, 𝑥𝑖 represents the actual 

inputs. For example, in Section 4, noise is included in the 

inputs, and in this case, the noise pattern corresponds to 

𝑥𝑖. If the number of pairs of patterns to be stored is P, the 

storage matrix is expressed as follows. 

 

𝑬𝟎 = 𝒙𝒊𝒙𝒊
𝑻 

= (

𝒙𝟏𝒙𝟏 𝒙𝟏𝒙𝟐 ⋯ 𝒙𝟏𝒙𝑵
𝒙𝟐𝒙𝟏 𝒙𝟐𝒙𝟐 ⋯ 𝒙𝟐𝒙𝑵
⋮ ⋮ ⋱ ⋮

𝒙𝑵𝒙𝟏 𝒙𝑵𝒙𝟐 ⋯ 𝒙𝑵𝒙𝑵

) (6) 

 

𝑬 =∑𝒂𝒊
𝒌𝒃𝒊

𝒌𝑻
𝑷

𝒌=𝟏

 

=∑

(

 
 
𝒂𝟏
𝒌𝒃𝟏

𝒌 𝒂𝟏
𝒌𝒃𝟐

𝒌 ⋯ 𝒂𝟏
𝒌𝒃𝑵

𝒌

𝒂𝟐
𝒌𝒃𝟏

𝒌 𝒂𝟐
𝒌𝒃𝟐

𝒌 ⋯ 𝒂𝟐
𝒌𝒃𝑵

𝒌

⋮ ⋮ ⋱ ⋮

𝒂𝑵
𝒌𝒃𝟏

𝒌 𝒂𝑵
𝒌𝒃𝟐

𝒌 ⋯ 𝒂𝑵
𝒌𝒃𝑵

𝒌

)

 
 

𝑷

𝒌=𝟏

 (𝟕) 

Next, the input and output methods of the pattern are de-

scribed. 

 

Step 1: As shown in Fig. 2, the input layer is mutually 

coupled with each oscillator. From Eq. (2), the memory ma-

trix 𝐸0 of K is used to recognize the input pattern. 

Step 2: Connect the input layer and the output layer. At 

this time, the oscillators of all input layers are intercon-

nected with the oscillators of all output layers, and from  

Eq. (2), the output pattern is recalled by using the memory 

matrix of E for K. 

Step 3: Check the phase of the voltage of each oscillator 

in the output layer. At this time, the difference between the 

phase of the voltage of each oscillator and that of the first 

oscillator is checked to determine whether they are syn-

chronous or asynchronous. The output pattern is white if 

the oscillators are synchronized, and black if they are not. 

Note that the selection of the reference oscillator may result 

in the output of an inverted pattern, depending on the input 

pattern.  

In addition, a threshold value is used to determine whether 

or not the synchronization is achieved. In this simulation, 

the threshold value was set to 1.0. 

 

 

3. Simulation Results 

 

We trained a 24×24 pattern of a dog and a flower in the 

input layer and a 14×12 pattern of the initials "D" and "F" 

in the output layer. Figure 3 shows the patterns of the 

learned pairs. 

 

 
Figure 3: The patterns of the learned pairs (dog and flow-

er). 

 

In this study, simulations were performed using the 

Runge-Kutta method to analyze the oscillator behavior. 

Also, the step size is fixed with h=0.1. The variables in Eq. 

(1) are ε=0.1, s=0.002, τ≦40 in step1, 40<τ in step2. 

 

Figure 4 shows the phase difference between the voltage 

of the reference first oscillator and the other oscillators in 

the output layer when the dog pattern is input. 

 

 
Figure 4: The phase difference in voltage. 
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Figure 5 shows the "D" recall process when inputting the 

dog pattern. It can be seen that "D" recalls the pattern nor-

mally. 

 

 
Figure 5: "D" recall process. 

 

Figure 6 shows the recall process of "F" when the flower 

pattern is inputted without changing the learned memory 

matrix. It can be confirmed that "F" is successfully re-

called as in the case of the dog pattern. 

 

 
Figure 6: "F" recall process. 

 

Figures 5 and 6 confirm that different numbers of inputs 

and recalls are possible by using input and output layers. 

 

 

4. Numerical Evaluation of Noise Insertion 

 

To numerically evaluate the characteristics of the output 

patterns when noise is inserted into the input patterns, we 

defined the degree of similarity ρ between the patterns. 

If the two patterns at this time are Ai and Bi, the similar-

ity ρ is expressed as follows. 

 

𝜌 =
1

𝑁
∑𝐴𝑖

𝑁

𝑖=1

𝐵𝑖  (𝟖) 

When two patterns are similar, the similarity ρ has a large 

value, and when they are the same, ρ=1. 

Figure 7 shows the input noise patterns. 5 types of patterns 

with increasing noise in sequence. The percentage of noise 

inserted was quantified by the similarity between the noise 

pattern and the exact dog pattern. The noise was created by 

inverting the black-and-white pattern. The locations of the 

pattern to be inverted were selected where the pattern was 

not close to the floral pattern. As a result, when a large 

amount of noise was inserted, the pattern was inverted from 

the flower pattern. 

 

 
Figure 7: input patterns with noise. (a) ρ=0.90 (b) ρ=0.70 

(c) ρ=0.50 (d) ρ=0.30 (e) ρ=0.11 

The similarity between the pattern recalled when each 

noise pattern was input and the normal "D" pattern was cal-

culated as the recall rate and shown in Fig. 8. It can be seen 

that the recall rate worsens as the noise increases. Finally, 

in Fig. 7(e), the recall was 4.5. At this point, we confirmed 

that the recall pattern was "F" because the input was close 

to the inverted pattern of the flower pattern. This is because, 

by definition, if "F" is recalled instead of "D," the recall rate 

is not 0, but 4.5, the similarity between "F" and "D." 

 

 
Figure 8: The recall rate for noise pattern input. 

 

5. Evaluation of Recall Rate Change with Number of 

Learning Patterns 

 

The third pairs of star and “S” patterns were learned to 

simulate recall. Figure 9 shows the patterns of the learned 

pairs. 

 

 
Figure 9: The patterns of the learned 3 pairs. 

 

Figure 10 shows the phase difference between the voltage 

of the reference first oscillator and the other oscillators in 

the output layer when the dog pattern is input to the learn-

ing model in the three-pair pattern. 

 

 
Figure 10: The phase difference between the voltage. 

 

Figure 11 shows the "D" recall process when inputting the 

dog pattern. It can be seen that "D" recalls the pattern nor-

mally. 
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Figure 11: "D" recall process. 

 

Figures 12 and 13 show the recall process of "F" and "S" 

when the flower pattern and flower pattern are input with-

out changing the learned memory matrix. As in the case of 

the dog pattern, it can be seen that the "F" and "S" are suc-

cessfully recalled. 

 
Figure 12: "F" recall process. 

 

 
Figure 13: "S" recall process. 

 

Next, we conducted a numerical analysis of recall patterns 

when the number of pairs of patterns to be learned was in-

creased. In addition to the second set of dog and flower pat-

terns proposed in section III, the third set of star patterns, 

the fourth set of apple patterns, and five sets of heart pat-

terns were used to simulate an increased number of learning 

pattern pairs. The newly added apple and heart patterns are 

shown in Fig. 14. 

 

 
Figure 14: Additional learned patterns. 

 

Figure 15 shows the respective recall rates for each of the 

dog patterns when the number of patterns to be learned was 

increased when the dog patterns were input. It can be seen 

that when the number of patterns to be learned was in-

creased, the time to complete recall increased. Also, when 

the number of pairs was increased to five, complete recall 

became more difficult. 

 
Figure 15: The respective recall when the number of pat-

terns to be learned were increased. 

6. Conclusions 

 

In this study, we analyzed a newly proposed hierarchical 

hetero-associative memory model. We confirmed that the 

hierarchical model can handle different numbers of data by 

using different numbers of oscillators for input and output. 

In addition, since this model can correct noise, we evalu-

ated the recall rate for noise patterns.  

Furthermore, we investigated the effect of increasing the 

number of training patterns on recall. Increasing the num-

ber of patterns to be learned increased the time to recall, 

and increasing the number of patterns prevented complete 

recall. In future studies, we intend to investigate the rela-

tionship between the number of oscillators and memory ca-

pacity. 
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