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Abstract— If clustering can be performed in a continuous
system, there is potential usefulness in processing speed for
larger scale clustering. We have proposed clustering method of
coupled chaotic circuit networks with learning. In this study,
we propose a method to extract the center of a cluster by
stabilizing synchronization through learning in networks where
synchronization is not stable due to chaos.

I. INTRODUCTION

Memristors were proposed by Chua in 1971 [1]. Mem-

ristors are passive devices that store a passing charge and

change resistance accordingly. Later, in 2008, Hewlett-Packard

Laboratories developed a memristor using a thin film of

titanium dioxide, which attracted attention as a fourth circuit

element. In recent years, the development of brain computers

using memristors has been actively studied in the field of

neuromorphic engineering [2], [3]. Due to the characteristics

of memristors, many computing methods have been proposed

that use memristors as synapses [4], [5]. Synapses are con-

nections between neurons that play an important role in signal

transmission.

One of the basic rules of learning in the brain is the Hebbian

rule. This rule has proposed by Hebb in 1949 [6]. This is a

fundamental rule of learning and long-term memory based

on the hypothesis that synapses become more efficient at

transmitting electrical stimuli each time a neuron fires, and

conversely, less efficient if they do not fire for a long time.

The neurobiological mechanism of Hebb’s rule has also been

identified. The electrical signal enhances the coupling strength

and strengthens the part of the system that communicates

more.

Our research group has been investigating synchronization

phenomena in coupled oscillators and coupled chaotic circuits.

While many studies of synchronization in networks have used

mathematical models for nodes, we have focused our research

on electronic circuit models. The reasons for this are, first,

that we would like to deal with synchronization observed as a

physical phenomenon that actually exists, and second, that an

electronic circuit model was necessary when we considered

engineering applications in the future. Now that memristor

devices are in practical use, replacing the coupling in our pre-

viously proposed coupled oscillator network with memristors

is expected to have applications in modeling more complex,

higher-dimensional nonlinear systems. Possible engineering

applications include modeling of cyber-physical systems.

In recent years, much data analysis has been important

in marketing and other areas. One of the data analysis is

clustering. Clustering is a method of classifying similar data

and is used in various fields such as data mining, image

processing and biological data analysis [7]-[9].

In previous studies, we have proposed a method of clus-

tering chaotic circuits on a two-dimensional plane using syn-

chronization and confirmed its effectiveness [10]-[13]. As a

further improvement, we are also investigating clustering when

the coupling between circuits is changed as in Hebbian rule

learning [14], [15].

However, the dynamics of the proposed coupled chaotic

network with learning had not been investigated. Therefore,

in this study, we focused on how the coupled chaotic circuit

network with learning makes synchronization decisions, and

investigated it in a network containing three clusters. By

using the computer simulations, we confirm that the proposed

method is a suitable system for extracting cluster centers by

learning coupling weights.

II. CHAOTIC CIRCUITS NETWORKS

The nodes of the network are represented by chaotic circuits.

The chaotic circuit is shown in Fig. 1. This chaotic circuit has

been studied in the references [16]-[18]. This circuit composed

of three memory elements, one linear negative resistance

element, and one nonlinear resistance element consisting of

two diodes.

The approximate I − V characteristics of the nonlinear

resistance element are indicated by the following equation,

where the parameter rd is the slope of the nonlinear resistance.

vd(i2) =
rd
2

(∣∣∣∣i2 + V

rd

∣∣∣∣−
∣∣∣∣i2 − V

rd

∣∣∣∣
)
. (1)

By changing the variables and using the parameters,

i1 =

√
C

L1
V x; i2 =

√
L1C

L2
V y; v = V z;
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(a) Chaotic circuit. (b) Chaotic attractor.

Fig. 1. Chaotic circuit model.
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The normalized circuit equations are obtained as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi

dτ
= αxi + zi

dyi
dτ

= zi + f(y)

dzi
dτ

= −xi − βyi −
N∑
j=1

γij(zi − zj)

(i, j = 1, 2, · · ·, N)

(3)

where f(y) is described as follows:

f(y) =
δ

2

(∣∣∣∣y + 1

δ

∣∣∣∣−
∣∣∣∣y − 1

δ

∣∣∣∣
)
. (4)

In the computer simulations, we set the parameters to be

α = 0.460, β = 3.0 and δ = 470. The characteristic function

f(y) can be described as a three-segment piecewise-linear

function. In this study, the value of γij reflects the distance

between the circuits in an inverse manner, as described using

the following equation:

γij =
g

(dij)2
. (5)

Here, dij denotes the Euclidean distance between the i− th
circuit and the j − th circuit, while g is a scaling parameter

that determines the coupling strengths.

III. CIRCUITS ARRANGEMENT AND LEARNING PROCESS

A. Circuits Arrangement

Here, we consider the case of 100 chaotic circuits arranged

in 2-dimensional space. The number of clusters is set to

three, cluster-1, 2 and 3 consist of 50, 30, and 20 chaotic

circuits, respectively. The chaotic circuits are randomly placed

according to a normal distribution (σ) from the center of each

cluster. The circuit arrangement with three clusters is shown

in Fig. 2.

The purpose of clustering for this circuit layout is not to

divide it into three clusters, but to extract as many nodes as

possible from the central part of the cluster.
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Fig. 2. Circuit arrangement with three clusters (N=100, the number of
clusters: 3, red points: 50 (cluster-1), green points: 30 (cluster-2), blue points:
20 (cluster-3)).

B. Learning Process

In the previous study, we have proposed the clustering

method that applies Hebbian rule as well as the determination

of clusters by synchronization of chaotic circuit networks. The

proposed clustering method is based on the concept of the

Hebb rule. As the clustering algorithm, it makes the coupling

strength of edges with high synchronization between circuits

stronger and the coupling of edges with weak synchroniza-

tion weaker. The clustering method with learning of coupled

chaotic circuits is explained below. (The conceptual diagram

of the computer simulation is shown in Fig. 3.)

[step-1] At the initial state, all nodes are fully connected

with coupling strengths depending on distance. The scaling

parameter g is set to g = 0.00008.

[step-2] After a transient phase, we apply two rules for a

sequence of generations. Each generation has length τh =
10, 000.

• (check synchronization:) In order to check whether two

nodes are alike, we calculate the synchronization ratio

for every pair of oscillators. If the synchronization ratio

is larger than 60%, the corresponding coupling strength

becomes stronger with Δγ = 0.00001.

In order to analyze the synchronization ratio, we define

a synchronization state as

|xk − xn| < 0.3 (k ∈ Sn)

[step-3] Step-2 is repeated until 100 iterations are reached

(H = 100).

[step-4] At the final state (H = 100), we check the synchro-

nization ratio for every pair of oscillators.

IV. SIMULATION RESULTS

First, we investigated changes in the number of synchro-

nized edges of coupled chaotic circuit networks. Figure 4

shows the change in the total number of synchronized edges

between the clusters. From this figure, the proposed method

with learning has less variation of synchronized edges with the

simulation time. In contrast, the conventional method shows a

large fluctuation of synchronized edges.
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Fig. 3. Learning process for clustering.

The evolution of synchronized edges within the three clus-

ters is shown in Fig. 5. It can be seen that for all clusters,

the proposed method with learning has less variation in the

number of edges, as well as the variation of synchronized

edges for the whole cluster.

Fig. 4. Total number of synchronized edges in the whole cluster.

Figure 6 shows the change in synchronization edges across

clusters. This edge is considered ”miss edge” from the clus-

tering concept. The large number of these missed edges is a

cause of poor clustering. From the results, it can be said that

both methods have a large variation of missed edges, however

the proposed method clearly has a higher number of times with

fewer missed edges. Therefore, we consider that learning of

the coupling weights influences the control of missed edges.

Average of number of synchronized edges in each category

is summarized in Tab. I. It can be seen that the number of

synchronized edges within clusters is higher for the conven-

tional method. On the other hand, the proposed method has

fewer synchronized edges between clusters (miss edges) and

is more effective for clustering.

Figure 7 shows examples of the results of displaying syn-

chronized edges for the proposed and conventional methods.

In the proposed method, there are synchronized edges in the

center of each cluster and the number of missed edges between

clusters is small. In the conventional method, there are many

Fig. 5. Number of synchronized edges in the cluster.

Fig. 6. Number of synchronized edges between clusters (miss edges).
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(a) cluster-1.
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(b) cluster-2.
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(c) cluster-3.
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TABLE I

AVERAGE OF NUMBER OF SYNCHRONIZED EDGES IN EACH CATEGORY

Type Proposed method Conventional method

Total 376.00 458.77
(in the cluster)
Cluster-1 225.63 290.38
Cluster-2 99.74 112.54
Cluster-3 50.63 55.85

Miss 76.75 181.51
(between the clusters)

synchronized edges throughout, but the number of missed

edges between clusters is also high. These results suggest

that the proposed method with learning process is effective

in extracting cluster features because synchronized edges are

concentrated in the central part of the clusters.

(a) proposed method with learning.

(b) conventional method without learning.

Fig. 7. One example of clustering result by displaying synchronized edges.

Finally, an example of a phase difference result is shown

in Fig. 8. This figure shows the phase of the first circuit

with reference to the other circuits in Lissajous. It can be

seen that the proposed method synchronizes with only a few

circuits, while the conventional method synchronizes with

many circuits. Therefore, this is a supporting result that the

proposed method is effective in cluster extraction.

(a) proposed method with learning.

(b) conventional method without learning.

Fig. 8. One example of phase difference between 1st circuit to the others.

V. CONCLUSION

In this study, we focused on the dynamics of the previously

proposed clustering method using synchronization of cou-

pled chaotic circuit networks with learning, and investigated

changes in synchronized edges. Because of the chaotic circuit,

synchronization in the network is not stable, but by learning

the coupling weights, we were able to reduce the variation

in the number of synchronization edges. We also found that

the proposed method has fewer synchronized edges between

clusters and is more likely to extract the center of the cluster.

Future work includes developing a method for accurate

clustering and investigating the case where the number of clus-

ters is increased. Clustering using memristor-coupled chaotic

circuits is also one of our future research topics.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y

X

"cluster1.dat"
"cluster2.dat"
"cluster3.dat"

"edge_hebb0.8.dat"

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

Y

X

"cluster1.dat"
"cluster2.dat"
"cluster3.dat"

"edge_nohebb.dat"

Authorized licensed use limited to: Yoshifumi Nishio. Downloaded on August 15,2023 at 12:05:08 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] L. O. Chua, “Memristor -The Missing Circuit Element,” IEEE Transac-
tions on Circuit Theory, vol. ct-18, no. 5, 1971.

[2] Y. Li, Z. Wang, R. Midya, Q. Xia and J. J. Yang, “Review of memristor
devices in neuromorphic computing: materials sciences and device
challenges,” Physics D: Applied Physics, vo51, no. 50, 2018.

[3] Y. Zhang, Z. Wang, J. Zhu, Y. Yang, M. Rao, W. Song, Y. Zhuo, X.
Zhang, M. Cui, L. Shen, R. Huang and J. J. Yang, “Brain-inspired com-
puting with memristors: Challenges in devices, circuits, and systems,”
Applied Physics Reviews, https://doi.org/10.1063/1.5124027, 2020.

[4] W. Huh, D. Lee and C-H. Lee, “Memristors Based on 2D Materials as an
Artificial Synapse for Neuromorphic Electronics,” Advanced Materials,
https://doi.org/10.1002/adma.202002092, 2020.

[5] K. Liao, P. Lei, M. Tu, S. Luo, T. Jiang, W. Jie and J Hao, “Memristor
Based on Inorganic and Organic Two-Dimensional Materials: Mech-
anisms, Performance, and Synaptic Applications,” ACS Appl. Mater.
Interfaces, https://doi.org/10.1021/acsami.1c07665, 2021.

[6] D. O. Hebb, “Organization of Behavior,” 1949.
[7] Daniel T. Larose & Chantal D. Larose “Discovering Knowledge in Data:

An Introduction to Data Mining,” John Wiley and Sons, 2014.
[8] N. Dhanachandra, K. Manglem & Y. J. Chanu, “Image Segmentation

Using K -means Clustering Algorithm and Subtractive Clustering Algo-
rithm,” Procedia Computer Science, Vol. 54, pp. 764-771, 2015.

[9] G. Manogaran, V. Vijayakumar, R. Varatharajan, P. M. Kumar & R. Sun-
darasekar, “Machine Learning Based Big Data Processing Framework
for Cancer Diagnosis Using Hidden Markov Model and GM Clustering,”
Wireless Personal Communications, Vol. 102, Issue 3, pp. 2099–2116,
2018.

[10] Y. Takamaru, H. Kataoka, Y. Uwate & Y. Nishio, “Clustering Phenomena
in Complex Networks of Chaotic Circuits,” Proc. ISCAS’12, Vol. 22, pp.
320-334, 2012.

[11] Y. Takamaru, Y. Uwate, T. Ott & Y. Nishio, “Dependence of Clustering
Patterns on Density of Chaotic Circuits in Networks,” RISP Journal of
Signal Processing, vol. 17, no. 4, pp. 103-106, Jul. 2013.

[12] K. Ago, Y. Uwate & Y. Nishio, “Investigation of Clustering in Complex
Networks Using Coupled Chaotic Circuits,” Proc. of IFAT’15, pp. 101-
102, 2015.

[13] K. Oi, Y. Uwate & Y. Nishio, “Synchronization and Clustering in
Coupled Parametrically Excited Oscillators with Small Mismatch,” Proc.
of ISCAS’15, pp. 910-913, 2015.

[14] Y. Uwate, T. Ott and Y. Nishio, “Synchronization and Clustering of
Chaotic Circuit Networks with Hebbian Rule,” Proc. of NCSP’22, pp.
373-376, Feb. 2022.

[15] Y. Uwate and Y. Nishio, “Clustering in Globally Coupled Chaotic
Circuits with Changing Weights,” Proc. of ISOCC’22, 2022.

[16] Y. Nishio, N. Inaba, S. Mori & T. Saito, “Rigorous Analyses of Windows
in a Symmetric Circuit,” IEEE Transactions on Circuits and Systems,
vol. 37, no. 4, pp. 473-487, Apr. 1990.

[17] C. Bonatto & J. A. C. Gallas, “Periodicity Hub and Nested Spirals in
the Phase Diagram of a Simple Resistive Circuit,” Phys. Rev. Lett., 101,
054101, Aug. 2008.

[18] A. Koseska, E. Volkov, & J. Kurths, “Real-World Existence and Origins
of the Spiral Organization of Shrimp-Shaped Domains,” Phys. Rev. Lett.,
105, 074102, Aug. 2010.

Authorized licensed use limited to: Yoshifumi Nishio. Downloaded on August 15,2023 at 12:05:08 UTC from IEEE Xplore.  Restrictions apply. 


