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abstract

Synchronization phenomena can be seen in many aspects
of our daily life and has applications in a variety of fields,
such as pacemakers and telecommunications. In recent years,
chimera states, where synchronous and asynchronous phe-
nomena are mixed, have attracted much attention. The os-
cillators are phase-locked when synchronous, and incoherent
when asynchronous.

In this study, we proposed a network of oscillators divided
into two-group and coupled only in one part. We observed
the time variation of the synchronization rate in each group
and phase distribution of the oscillators. As a result, it was
observed that the oscillators in two parts, a synchronous part
and an asynchronous part.

1. Introduction

Networks of coupled system are very common in many
scientific and engineering fields. One very important phe-
nomenon about this kind of network is the collective synchro-
nization, where all the oscillators in a large-scale network
are locked to a common frequency or phase, although their
native frequency are quite different and widely distributed.
Therefore, synchronizing a network of coupled oscillators is
a very important issue for various mathematically describe
models, one of which is the famous Kuramoto model used
to study such collective synchronous phenomena in 1975. In
the Kuramoto model, oscillators are generally all-to-all cou-
pled. Normally, if the oscillator is all-to-all coupled with a
certain coupling strength, it is expected that it synchronise
completely with time. This study presents about a chimera
state in which an array of identical oscillators split into two
dominants. Namely, one coherent and phase locked, the other
incoherent and asynchronized.

In this study, a system with two-group is proposed and syn-
chronization state is investigated. By using computer simula-
tions, we observe the phase state of the oscillators by chang-
ing coupling strength K.

2. Kuramoto model

The Kuramoto model is used in this study. We consider
a network of N coupled limit-cycle oscillators whose phase
are θi, i = 1, 2, ..., N . The equation of the Kuramoto model is
shown in Eq. (1).

∂θi
∂t

= ωi +
K

N

N∑

j=1

sin(θj − θi). (1)

At this time, the native frequencies ωi of the oscillators
are randomly distributed. Where K is the global coupling
strength.

These oscillators are located around a cycle and rotate at
their own frequencies to define a complex order parameter R.

Reiφ =
1

N

N∑

j=1

eiθj . (2)

Where φ indicates the average phase of the coupled oscil-
lators, and the order parameter R (0 ≤R ≤1) indicates a
measure of phase coherence. In the case of R = 1, it indicates
that all oscillators come to a single tight clump. In the case
of R = 0, it indicates that oscillators are scattered uniformly
around the cycle. From Eq. (2), Eq. (3) is as follows.

∂θi
∂t

= ωi −KR sin(θj − φ). (3)

3. Proposed system

In conventional studies, all-to-all oscillators are coupled.
We proposed that oscillators are divided two parts. Oscilla-
tors are all-to-all coupled in the same group. Figure 1 shows
a simplified version of coupling.

In this paper, ωi follows the Cauchy distribution. The num-
ber of oscillators N = 100 and the coupling strength K = 5.0
or 9.0. K is constant everywhere.
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Figure 1: Simplified diagram of the coupling
of the proposed system.

4. Simulation results

4.1 For Two-group case K = 5.0

Figure 2 shows time evolution of R. R shows the overall
synchronization rate. R1 and R2 indicate the synchronization
rate of each group. R3 shows the synchronization rate of the
oscillators connecting each group. R1 and R2 differ in the
way they are synchronized. R2 is more slowly synchronized
than R1.

R

t[s]

Figure 2: Time evolution of R in two-group.

Figure 3 shows phase histogram. When t=0.0, the oscilla-
tors are falling apart. It can be seen that the phase is trying
to remain constant over time. However, two peaks are seen.
This could be due to the division of the oscillators into two-
group.

5.0

10.0

15.0

20.0

25.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

p
e
rc

e
n
ta

g
e
[%

]

phase 

t=0.0[s]

 0

 5

 10

 15

 20

 25

 30

-3 -2 -1  0  1  2  3

'-'

5.0

10.0

15.0

20.0

25.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

p
e
rc

e
n
ta

g
e
[%

]

phase 

t=4.7[s]

 0

 5

 10

 15

 20

 25

 30

-3 -2 -1  0  1  2  3

'-'

Figure 3: Phase histogram in two-group.

Similar to Fig. 3 and 4 shows the distribution of phase. One
group is made up of 50 oscillators, each of which is found to
be locked phase. On the other hand, oscillators locked an-
other group of phases are also seen.
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Figure 4: Phase diagram in two-group.
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4.2 For original Kuramoto model K = 5.0
The fact that the network is one-group is the same as in

the original Kuramoto model. Figure 5 shows time evolution
of R. The synchronization rate has increased compared to
Fig. 2.

t[s]

R

Figure 5: Time evolution of R in one-group.

Figure 6 shows the frequency distribution of phases as in
Fig. 3. When t = 0.0, the phases of all oscillators are scattered.
However, unlike the two-group case, only one peak are seen.

Figure 6: Phase histogram in one-group

Figure 7 shows the phase of each oscillator as in Fig. 4. It
shows that the phases are trying to become constant. Phase is
locked some extent, but asynchronous phase changing can be
seen.

t=5.0[s]

Figure 7: Phase diagram in one-group.

4.3 For Two-group case K = 9.0

The case of increased bond strength is shown below Here,
coupling strength K = 9.0. Figure 8 shows that both groups
are synchronised and that the groups are synchronised with
each other.

Figure 8: Time evolution of R in two-group K = 9.0.
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Figure 9 shows the temporal variation of the frequency dis-
tribution. Unlike Fig. 3 and Fig. 6, Fig. 9 shows the time vari-
ation of the frequency distribution in 0.1 second increments.
Several oscillators are found to be freely phase-shifting. Most
phases are clustered in one place, but some oscillators are
asynchronous.
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Figure 9: Phase histogram in two-group K = 9.0.

Figure 10 shows phase diagram as Fig. 4 and Fig. 7. The
phase is reached a more constant value than in Fig. 4. As in
Fig. 4, many phases are found to be locked two values.
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Figure 10: Phase diagram in two-group K = 9.0.

5. Conclusions

In this study, we proposed two-group Kuramoto model.
The phase was seen to be fixed and freely changing. In other
words, a mixture of synchronised and asynchronous oscilla-
tors states was observed. However, it was difficult to observe
even the specific behaviour of each oscillator. In the future,
We would like to investigate the time variation of the syn-
chronised percentage and the phase of each oscillators. These
make the observation of the chimera states even clearer.
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