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Abstract

In this study, we investigate clustering phenomena in a net-

work composed of coupled chaotic circuits. In this network

model, the coupling strength is reflected by the distance in-

formation when the chaotic circuits are placed in a two-

dimensional space. For more advanced clustering, we pro-

pose a new method that applies Hebbian rule to synchroniza-

tion. By applying Hebbian rule, it is confirmed that clusters

that cannot be extracted by standard chaotic circuit networks

can be extracted.

1. Introduction

Today, every time we open a newspaper, the page contains

Artificial Intelligence:AI characters, and new technologies

that apply deep learning are being developed everywhere in

the industry. One of the basic laws of learning in the brain is

the Hebbian rule. This rule has proposed by Hebb in 1949 [1].

This is a fundamental rule of learning and long-term mem-

ory based on the hypothesis that synapses become more ef-

ficient at transmitting electrical stimuli each time a neuron

fires, and conversely, less efficient if they do not fire for a long

time. The mechanism as to the neurobiology of the Hebbian

rule has also been clarified. Coupling strengths are enhanced

by the electrical signals and strengthened the part of more

communications. The neurons have output part called axon.

Some axons are covered with oligodendrocyte on the Myelin

sheaths. Oligodendrocyte is white material which is rich in

lipid. Covered axons can communicate quicker than non-

covered ones. This phenomenon is called Myelination [2].

For example, we practice to achievement something when we

usually try to do it. This action from challenge to achieve-

ment is myelination. Therefore, there is a big relation be-

tween learning and myelination. The study about myelina-

tion has possibility to make more performance for learning

by adapting application.

In recent years, it has become necessary to handle increas-

ingly large amounts of information in our daily lives. To

enable structuring and analysis of such data, it is useful to

partition each data set into clusters. The aim of a clustering

algorithm is to find data clusters that consist of similar ele-

ments. Clustering algorithms have widespread applications

in a variety of fields, including data mining, image process-

ing and biological data analysis [3]-[5]. Various different

clustering algorithms are thus available, along with many dif-

ferent applications. Previously, many clustering studies have

been performed using discrete time models, such as coupled

map lattices (CMLs) and self-organizing maps (SOMs) [6]-

[8]. However, few studies of clustering have been performed

using a continuous time model. Therefore, this work focuses

on research into clustering phenomena using real electronic

circuits in a continuous time model.

Coupled chaotic circuits can be realized using electronic

circuits and various interesting phenomena can be observed

in these circuits. In recent years, many studies have reported

on application of the clustering and synchronization phenom-

ena that can be observed in coupled chaotic circuits to natural

sciences. The reason for this interest is that the characteristics

of the chaos phenomena observed in coupled chaotic circuits

also exist in real life, in phenomena such as human behavior,

emotions and heartbeats. At the same time, synchronization

and clustering phenomena have been studied associated with

the chaos phenomena. Coupled chaotic circuits thus have the

potential to be applied to a variety of different fields. We

believe that we can apply the synchronization phenomena of

coupled chaotic circuits to social networks in real life if we

can clear up the chaos phenomena. Therefore, our study con-

siders a new approach to investigation of the synchronization

and clustering phenomena that occur in coupled chaotic cir-

cuits.

In our previous studies [12]-[15], we have investigated

clustering in two-dimensional networks of complex chaotic

circuits, where the coupling strength reflects the network

distance information. We showed that circuits that are ar-

ranged close to each other can achieve phase synchroniza-
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tion, whereas coupled circuits located far away from each

other cannot be synchronized. We also observed that these

networks of coupled chaotic circuits can be split into dif-

ferent synchronized groups, thus revealing a clustering phe-

nomenon.

However, the layout of the clustering we were targeting

was easy, and we needed to consider a more practical and

difficult problem. To achieve more complex and advanced

clustering, we propose a clustering method based on a new

chaotic coupled circuit network applying Hebbian rule. For a

more complex clustering example, we consider a circuit lay-

out with overlapping clusters. By using computer simultions,

we confirm that chaotic circuit network with the Hebbia rule

is more effective than the starndard chaotic circit network.

2. Chaotic Circuits Model

In this section, we explain the chaotic circuit model. Fig-

ure 1 shows the chaotic circuit model that has been investi-

gated in the literature [9]-[11]. This circuit consists of three

memory elements, one linear negative resistance element, and

one nonlinear resistance element consisting of two diodes.

The negative resistance is realized using the linear region of a

negative impedance converter made from an operational am-

plifier.

(a) Chaotic circuit. (b) Chaotic attractor.

Figure 1: Chaotic circuit model.

The approximate I − V characteristics of the nonlinear

resistance element are indicated by the following equation,

where the parameter rd is the slope of the nonlinear resis-

tance.
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The normalized circuit equations can be described by
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The following equations represent the circuit equations

when all the chaotic circuits are coupled globally with each

other (all-to-all coupling).



















































dxi

dτ
= αxi + zi

dyi

dτ
= zi + f(y)

dzi

dτ
= −xi − βyi −

N
∑

j=1

γij(zi − zj)

(i, j = 1, 2, · · ·, N)

(5)

In the computer simulations, we set the parameters to be

α = 0.460, β = 3.0 and δ = 470. The characteristic function

f(y) can be described as a three-segment piecewise-linear

function. In this study, the value of γij reflects the distance

between the circuits in an inverse manner, as described using

the following equation:

γij =
g

(dij)2
. (6)

Here, dij denotes the Euclidean distance between the i−th

circuit and the j − th circuit, while g is a scaling parameter

that determines the coupling strengths.

3. Overlapped Clustering Arrangement and Hebbian

Learning

The previous circuit layout was a case where clustering

was easy. This time, we consider a more difficult case: a cir-

cuit layout with overlapping clusters. The number of clusters

is set to three, and the chaotic circuits are randomly placed

according to a normal distribution from the center of each

cluster. The circuit arrangement with overlapped clusters is

shown in Fig. 2.

The purpose of clustering for this circuit layout is not to

divide it into three clusters, but to extract as many nodes as

possible from the central part of the cluster.
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(a) Overlapped clusters. (b) Circuit arrangement.

Figure 2: Circuit arrangement with overlapped clusters

(N=100, the number of clusters: 3, red points: 30 (cluster-

1), green points: 30 (cluster-2), blue points: 40 (cluster-3)).

In this study, we propose a new clustering method that ap-

plies Hebbian rule as well as the determination of clusters

by synchronization of chaotic circuit networks. The Heb-

bian rule states that synapses, which connect neurons be-

come more efficient when neurons fire repeatedly, and less

efficient when they do not fire for long periods of time. We

apply this Hebbian rule to chaotic circuit synchronization. In

other words, the coupling between the synchronized chaotic

circuits is made stronger, and the coupling between the un-

synchronized chaotic circuits is made weaker. The Hebbian

rule is applied to the chaotic circuits network as following

steps.

[step-1] At the initial state, all nodes are fully connected with

coupling strengths depending on distance.

[step-2] After a transient phase, we apply two rules for a

sequence of generations. Each generation has length τh =
10, 000. The conceptual diagram of the computer simulation

is shown in Fig. 3.

• (check synchronization:) In order to check whether

two nodes are alike, we calculate the synchronization

ratio for every pair of oscillators. If the synchroniza-

tion ratio is larger than 50%, the corresponding coupling

strength becomes stronger with ∆γ = 0.01.

In order to analyze the synchronization ratio, we define

a synchronization state as

|xk − xn| < 0.3 (k ∈ Sn)

[step-3] Step-2 is repeated until 10 iterations are reached

(H = 10).

[step-4] At the final state (G = 10), we check the synchro-

nization ratio for every pair of oscillators.

4. Simulation Results

Figures 4 and 5 show the clustering results of chaotic cir-

cuit network with/without Hebbian rule. In the case of clus-

τts=100,000

...

τ

transient state H1 H2 H3 H4 H10

τg=10,000

τts

Hebbian Learning (H)=10

voltage differences: fabs(xi-xj) < 0.3
synchronization ratio > 50%

τh τh τh τh τh

(iteration)

Parameters:

synchronization
coupling: γ +=0.001

un-synchronization 
coupling: γ -=0.001

Applying Hebbian Learning

Figure 3: Process of Hebbian Learning.

tering with Hebbian rule, it was successful in extracting more

nodes from the center of the cluster.
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Figure 4: Clustering result with Hebbian rule.

The extraction rates of the clusters are summarized in the

Tabs. I and II. By using the Hebbian rule, over half of the

nodes in the two clusters have been successfully detected.

While in the case of the clustering without Hebbian rule, the

number of detected nodes in the every cluster was less than

half. Therefore, it can be said that the clustering method for

chaotic circuit networks using the Hebbian rule is effective.

Table 1: Clustering result with Hebbian rule.

nc nen %

cluster-1 30 22 73.3

cluster-2 30 19 63.3

cluster-3 40 19 47.5
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Figure 5: Clustering result without Hebbian rule.

Table 2: Clustering result without Hebbian rule.

nc nen %

cluster-1 30 7 23.3

cluster-2 30 4 13.3

cluster-3 40 9 22.5

5. Conclusion

In this study, we propose a clustering method based on a

new chaotic coupled circuit network applying Hebbian rule in

order to achieve more complex and advanced clustering, For

a more complex clustering example, we considered a circuit

layout with overlapping clusters. By using computer simulti-

ons, we confirmed that chaotic circuit network with the Heb-

bian rule is more effective than the starndard chaotic circit

network. By using the synchronization state between nodes,

we were able to confirm that it can be applied to more ad-

vanced clustering.

In future work, we would like to study clustering phenom-

ena in large-scale networks. Furthermore, we hope to apply

the clustering methods developed here to data mining, image

processing and other applications in real life situations.
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