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Abstract— In this study, we focus on an effect of frustration to
triangular oscillatory network with stochastically coupling. We
propose a coupled nonliear circuit network with stochastically
coupling. Frustration as environmental factor is occurred by
network topology which is composed from polygonal structure.
We investigate synchronization of the proposed network using
different frustration levels by changing the coupling strength. By
using computer simulations, the effect of frustration to triangular
oscillatory networks with stochastically coupling is shown.

I. INTRODUCTION

Coupled oscillatory circuits are excellent models for de-
scribing high-dimensional nonlinear phenomena occurring in
our living world. In particular, synchronization is one of the
most important functions that can be explained and explored
with the help of an oscillator. This is because, when oscillators
are coupled, a strong correlation rhythm between oscillators
called a synchronized state appears. Therefore, many different
types of coupled oscillatory networks were proposed and many
interesting synchronization phenomena have been discovered.

In our research group, we have been studying the synchro-
nization phenomena observed from the nonlinear oscillatory
networks. We have investigated synchronization phenomena
in coupled polygonal oscillatory networks. Through computer
simulations and theoretical analysis, we confirmed that the
coupled oscillators tended to synchronize to minimize the
power consumption of the whole system. The phase difference
of the shared oscillators was determined by finding the mini-
mum value of the power consumption function. We consider
that the synchronization in complex oscillator networks are
useful for a deeper understanding of control methods in smart
grid, communication systems and so on.

However, many of the networks that have been studied
so far are static models, and it is necessary to propose a
model that changes the network topology like a network
observed in the real world including environmental factors.
In this study, we focus on an effect of frustration to polygonal
oscillatory network with stochastically coupling. We propose a
coupled nonliear circuit network with stochastically coupling.
Frustration as environmental factor is occurred by network
topology which is composed from polygonal structure. In this
system, van der Pol oscillators are connected to every node of

a polygonal network. I n this oscillatory system, two adjacent
oscillators tend to synchronize with anit-phase. Hence, if the
number of nodes is odd, frustration occurs in the polygonal
network. Each node has a coupling probability which is key
factor to connect or not (on/off coupling). At every certain
time in a simulation, the network topology is changed by
the coupling probability. We investigate synchronization of the
proposed network using different frustration levels by chang-
ing the coupling strength. By using computer simulations, the
effect of frustration to polygonal oscillatory networks with
stochastically coupling is shown.

II. NETWORK MODEL USING VAN DER POL OSCILLATORS

The conceptual network models with different frustration
levels used in this study is shown in Fig. 1. In this figure,
triangular oscillators are coupled with edges on 2-dimensional
space and a circle denotes a van der Pol oscillator. Each edge
has a coupling probability (p) which is key factor to connect
or not (on/off coupling). At every certain time (τ=500) in a
simulation, the network topology is changed by the coupling
probability.
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Fig. 1. Network model with triangular oscillators.
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Figure 2 shows a van der Pol oscillator. This oscillator
is composed by an inductor, a negative resistance and a
condenser. The oscillator component is very simple, however
the oscillator could generate oscillation time wave. When the
parameter of the nonlinearity is set to small value (e.g. ε=0.1),
time wave form behaves similar to sin wave.

The circuit realization (target on 1st, 5th and 6th oscillators)
of triangular oscillatory networks is shown in Fig. 3. In this
circuit model, we use unique coupling method for two adjacent
osicllators. Two adjacent oscillators are coupled by a resistor
via a inductor which originally belongs to each van der Pol
oscillators. The inductor of one van der Oscillator is devided
to six to connect the next oscillators. If the oscillators are
located at boundary position, the inductors connect to the earth
resistance via resistor R.

By using this coupling scheme, two oscillators tend to syn-
chronize at anti-phase state. However, in the triangular oscilla-
tory network, two oscillators can not synchronized with anti-
phase state because of the network structure. Then, the coupled
oscillators synchronize with phase difference to minimize the
enegy consumption. This is really original part compared with
the other networks focusing on synchronization.
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Fig. 2. van der Pol oscillator.
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Fig. 3. Circuit realization for 1st, 5th and 6th oscillators in Fig. 1.

We develop the expression of the circuit equations of this
model. The vk−iRk characteristics of the nonlinear resistor are
assumed to be the following third order polynomial equation;

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (k = 1, 2, 3, 4). (1)

Then the circuit dynamics is described by the following
ordinary differential equation:

C
dvk
dt

= −iRk − iak − ibk − ick

6L
diak
dt

= vk − rmiak −R(iak + in)

6L
dibk
dt

= vk − rmibk −R(ibk + in)

6L
dick
dt

= vk − rmick −R(ick + in)

6L
didk
dt

= vk − rmidk −R(idk + in)

6L
diek
dt

= vk − rmiek −R(iek + in)

6L
difk
dt

= vk − rmifk −R(ifk + in)

(2)

Where, in denotes the current from the neighbor oscillator over
the corresponding coupling resistor. By using the variables and
the parameters,

t =
√
LCτ, vk =

√
g1
3g3

xk,

iak =

√
g1
3g3

√
C

L
yak, ibk =

√
g1
3g3

√
C

L
ybk,

ick =

√
g1
3g3

√
C

L
yck, idk =

√
g1
3g3

√
C

L
ydk,

iek =

√
g1
3g3

√
C

L
yek, ifk =

√
g1
3g3

√
C

L
yfk,

in =

√
g1
3g3

√
C

L
yn,

ε = g1

√
L

C
, γ = R

√
C

L
, η = rm

√
C

L
,

The normalized circuit equations governing the circuit are
expressed as

dxk
dτ

= ε
(
1− 1

3
xk

2
)
xk − (yak + ybk + yck)

dyak
dτ

=
1

6

{
xk − ηyak − γ(yak + yn)

}
dybk
dτ

=
1

6

{
xk − ηybk − γ(ybk + yn)

}
dyck
dτ

=
1

6

{
xk − ηyck − γ(yck + yn)

}
dydk
dτ

=
1

6

{
xk − ηydk − γ(ydk + yn)

}
dyek
dτ

=
1

6

{
xk − ηyek − γ(yek + yn)

}
dyfk
dτ

=
1

6

{
xk − ηyfk − γ(yfk + yn)

}

(3)

In these equations, γ is the coupling strength, ε denotes the
nonlinearity of the oscillators. For the computer simulations,
we calculate Eq. (3) using the fourth-order Runge-Kutta
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method with the step size h = 0.005. The parameters of this
circuit model are fixed as ε = 0.1 and η = 0.0001.

III. SIMULATION RESULTS

For the computer simulations, 20 van der Pol oscillators are
coupled in triangular oscillatory space like Fig. 1. By changing
the coupling strength (γ) and the coupling probability (p) in
the network, the average amplitude of coupled oscillators are
investigated.

A. Amplitude Change

Figure 4 shows the simulation results of the average am-
plitude with coupling probability (p). In the case of static
network (p=1.0), the average amplitude of 4 networks has big
difference from 0.93 to 1.94. While if the coupling probability
is set to 0.2 (dynamical networks), the average amplitude of
all 4 networks has similar value around 1.99. From this result,
we confirm that the frustrated network (γ=2.0) is affected
a lot by stochastically coupling. By decreasing the coupling
probability, the network topology is changed dynamically, then
the frustration effect is defused.

The every amplitude are calclated as shown in Fig. 5.
When the coupling strength is weak (γ=0.1), all amplitude of
coupled oscillaotr does not change by changing the coupling
probability (Fig. 5(a)). By increasing the coupling strength,
the amplitude of some oscillators decrease with the coupling
probability. The amplitude of the oscillators which are located
in the middle of the network more decrease than the others
(Fig. 5(b)-(d)).
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Fig. 4. Average amplitude.

B. Phase Difference

Next, we investigate the phase difference between 1st oscil-
lator and the others when the coupling probability is changed.
For the simulation, initial condition is set to that two adjacent
oscilattors synchronize with anti-phase state. The simulation
results of the phase differences are shown in Figs. 6 and
7. In the case of Fig. 6, the coupling strength is fixed with
γ=0.5. The phase difference converges several points when
the coupling probability is set to p=1.0. By decreasing the
value of the coupling probability, the phase difference starts
to vibrate with small amplitude. And, some oscillators do not
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(a) γ=0.1. (b) γ=0.5.
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Fig. 5. Amplitude change.

synchronize when the coupling probability p is smaller than
0.4.

In the case of Fig. 7, the coupling strength is fixed with
γ=1.0. The coupled oscillatory network has frustration. There-
fore, the phase difference can not converge one point as shown
in Fig. 7(a),(b). By decreasing the value of the coupling
probability (p=0.6), the phase difference converges with small
vibrations at some points (Fig. 7(c),(d)). For the frustrated
network, the stocastically coupling is effective to obtained the
similar phase difference with the non-frustrated network.

IV. CONCLUSION

In this study, we proposed coupled frustrated polygonal
oscillators with a stochastically coupling. This coupling is
switched on/off state depending on the coupling probability.
As the first step, 20 van der Pol oscillators are coupled in
triangular oscillatory network was investigated. We calculate
the amplitude of coupled oscillators in order to capture the ef-
fect of frustrations. From computer simulations, we confirmed
that by decreasing the coupling probability in the proposed
networks, the average amplitude of all networks reached to
2.0 which means that network has no frustration.

Next, we also investigated the phase diffrence by changing
the coupling strength. When the network with weak coupling,
the oscillators does not synchronize with small value of the
coupling probability. While, the case of the network with
strong coupling, the original phase difference can be obtained
by using the appropriate coupling probability.
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(b) p=0.8.
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(c) p=0.6.
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(d) p=0.4.
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Fig. 6. Phase difference (γ=0.5).
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(b) p=0.8.
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Fig. 7. Phase difference (γ=1.0).
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