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Abstract— It is well known that burst patterns of neuronal 
networks may play an important role in information processing 
in the brain. We consider that it is advantageous to construct a 
model using mathematical neuronal models producing burst 
patterns, because it is such models are easier to study and more 
accessible as compared to real biological neuronal data. In this 
study, we use the Izhikevich neuron model to produce burst 
patterns and apply a recurrence plot density entropy to the 
Izhikevich neuron data. 
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I.  INTRODUCTION 
Burst patterns within neurons may play an important role in 

information processing in the brain. Therefore, burst detection 
and burst pattern analyzes methods are developed, which are 
used in various fields [1]. Although it is important to study 
burst patterns, as these can relate to network syn- chronicity 
and synaptic connectivity, unveiling the structure of the whole 
neuronal network is also required. Nonlinear time-series 
analysis is a useful tool for characterizing the dynamics behind 
observed time-series data [2]. Typically, neuronal data obtained 
from living neurons is high-dimensional and dynamic data, 
therefore nonlinear time-series analysis is suitable to 
characterize neuronal data. Previously, we pro- posed a 
visualization method for bursting patterns of whole neural 
networks using nonlinear time series analysis [3]. We applied 
nonlinear time-series analysis to three sets of time- series data 
from a neuronal culture measured at days in vitro (DIV) 15, 20 
and 30, respectively. By using computer simulations, we 
confirmed that the characteristics of these neuronal networks 
change across different DIV and that the proposed visualization 
methods are suitable to capture the essence of these changes.  

However, it is difficult to extract the ground-truth of the 
underlying network morphology for data obtained from real 
biological neuronal networks. To relate these time-series 
analysis results to the underlying network morphology, it is re- 
quired to construct a model using mathematical neuron models 
producing such burst patterns. In our previous study, we 
propose a visualization method of network characteristics of 
burst patterns obtained from Izhikevich neuron model using 
nonlinear time-series analysis. From the simulation results, we 
confirm that the Izhikevich neuron model shows similar 
development stages as biological neurons, by controlling the 
parameters of the coupling probability and strength [4].  

In this study, we apply recurrence plot density entropy to 
spike burst data generated from Izikevich neuron model and 
investigate the characteristics of spike burst data. 

II. IZHIKEVICH NEURON MODEL 
Izhikevich neuron model efficiently produces a wide 

variety of neuron spiking and bursting dynamics. The 
Izhikevich neuron model is described by the following 
equations. 

 
Where v represents the membrane potential of the neuron, u 

represents a slow membrane recovery variable, accounting for 
the activation of K+ ion currents and inactivation of Na+ ion 
currents. Iex denotes the excitatory input current. In the 
computer simulations, 1,000 neurons were coupled randomly. 
The ratio of excitability and inhibitory neuron is 0.8 and 0.2, 
respectively. The parameters of the Izhikevich neuron model 
are fixed with a=0.02, b=0.2, c=-50 and d=8. By using these 
parameters, the Izhikevich neuron model produces tonic 
spiking as shown in Fig. 1. 

 
Fig. 1. Tonic spiking of the neuron network model. 

       

  The coupling probability (p) of the network and the 
coupling strength (g) of excitability neurons are important 
parameters for modeling the development of neurons. Figure 2 
shows the network activity of 1,000 neurons, the firing rate 
during a fixed bin, for different values of the coupling 
probability and strength. 

 

 



(a) p=0.2, g=1.6 [mV] 

(b) p=0.08, g=2.2 [mV] 

(c)  p=0.03, g=2.5[mV] 

Fig. 3 Time series data of the simulated neuronal network. 

III. NONLINEAR TIME SERIES ANALYSIS

A. Recurrence Plot Density Entropy (RPDE) 
Recurrence time is calculated as the distance between the 

points on the vertical line of the recurrence plot (RP) [5], [6]. 
Little et al. have proposed the Recurrence Period Density 
Entropy method (RPDE). In this method, the iterations of each 
point to the neighborhood ε are tracked, and the resulting time 
intervals are used to build a histogram of iteration times. This 
histogram is used to calculate the recurrence period density 
function. The normalized entropy of this density is defined as 
following equation [7]. 

The value of Hnorm changes in the range from zero to one. For 
the periodic signals, Hnorm=0, while the uniform white noise, 
Hnorm=1.

B. Simulation Results 
Figure 4 shows the simulation results of the RPDE of 10 

average. The spike rate of Fig. 3 (b) has highest RPDE. From 
this result, it was found that the characteristics of the neuron 
spike influence the coupling strength and coupling probability 
connection rate of the network. When the coupling strength or 
the coupling probability are small, the periodicity of the neuron 
activities becomes high (Fig. 4 (a) and (c)).  

Fig. 4 Results of RPDE (Hnorm). 

IV. CONCLUSIONS

In this study, we investigated the characteristics of neuron 
spike data of Izhikevich neuron model using recurrence plot 
density entropy. By using the computer simulations, we 
confirmed that the spike data have more periodicity when the 
network parameters are set with strong coupling probability 
and weak coupling strength or weak coupling probability and 
strong coupling strength. 
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