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Abstract
This paper considers comparison of the complexity of chaos
generated in many degrees of freedom chaotic circuits. We in-
crease the number of connected subcircuits from two to three
in order to produce more complex chaos. By means of the
circuit experiment and computer simulation, we show chaotic
attractors and Poincare maps. From the results, we confirmed
that more complex chaos is generated in the each circuit.

1. Introduction
Chaos has two major features. They are initial value sensi-

tivity and long-term unpredictability. It is difficult to predict
long-term weather forecasts [1] due to initial values such as
temperature, atmospheric pressure, and wind speed, etc.

Chaotic circuit is used to considers nonlinear phenomena
such as natural phenomena. It is faster and easier to ex-
periment than actual natural phenomena. Strictness anal-
ysis is difficult for chaotic phenomena generated in high-
dimensional systems [2]. Therefore, getting closer to high-
dimensional chaos that exists in nature leads to an effect that
is useful for the real world from a new perspective. For ex-
ample, it may be possible to improve the confidentiality of
chaotic communications [3] or to be closer to human judg-
ment in brain-type computers [4]. In addition, when we
use chaos for engineering applications, it is expected to be
smaller type, faster speed, and larger scale [5].

In this study, we investigate comparison of the complex-
ity of chaos generated in many degrees of freedom chaotic
circuits. In the previous study, it was proposed the circuit
consisting of two Inaba’s circuits coupled by one linear neg-
ative resister [6]. At this time, the circuit is set a different
parameter values, especially natural frequencies for each cir-
cuit. Then we compare the two circuits in series with the
three. We show chaotic attractors generated in the circuit ex-
periment and computer simulation. In addition, we compare
the complexity with Poincare maps created by computer sim-
ulation.

2. System model
In the previous study, we use the circuit model of two de-

grees of freedom chaotic circuit in Fig. 1. This circuit is ex-
panded from the Inaba’s circuit to two degrees of freedom
chaotic circuit. In this circuit, we investigate the case which
the natural frequency of the lower subcircuit is higher than
the natural frequency of the upper subcircuit.
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Fig.1 Circuit model of two degrees of freedom chaotic circuit.
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The normalized circuit equations are described as follows:

ẋ1 = α(x1 + x4)− (x2 + x3)
ẋ2 = x1

ẋ3 = β1(x1 − f(x3))

ẋ4 = αγ(x1 + x4)− γ(x5 + x6)

ẋ5 = β2x4

ẋ6 = β3(x4 − f(x6)).

(1)

The characteristic equation for the diode is described as
follows:

f(x) = 1
2ε (x+ ε− |x− ε|). (2)

3. Proposed system
In this study, we use the circuit model of three degrees of

freedom chaotic circuit in Fig. 2. This circuit consists of two
degrees of freedom chaotic circuit and another Inaba’s circuit
connected in series in order to produce more complex chaos.

Fig.2 Circuit model of three degrees of freedom chaotic cir-
cuit.
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The normalized circuit equations are described as follows:



ẋ1 = α(x1 + x4 + x7)− (x2 + x3)
ẋ2 = x1

ẋ3 = β1(x1 − f(x3))

ẋ4 = αγ1(x1 + x4 + x7)− γ1(x5 + x6)

ẋ5 = β2x4

ẋ6 = β3(x4 − f(x6))

ẋ7 = αγ2(x1 + x4 + x7)− γ2(x8 + x9)

ẋ8 = β4x7

ẋ9 = β5(x8 − f(x9)).

(3)

The characteristic equation for the diode is described as
follows:

f(x) = 1
2ε (x+ ε− |x− ε|). (4)

4. Results
4.1. Two degrees of freedom chaotic circuit

We show the experimental and computer simulation results
of two degrees of freedom chaotic circuit in Fig. 1. Figure　
3 (a) is the result of the top circuit from circuit experiment.
Figure 3 (b) is the result of the top circuit from computer
simulation. Figure 4 (a) is the result of the bottom circuit from
circuit experiment. Figure 4 (b) is the result of the bottom
circuit from computer simulation.
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Fig. 3 Chaotic attractors in the top circuit.
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Fig. 4 Chaotic attractors in the bottom circuit.

In the circuit experiment, the circuit parameters are cho-
sen as C1 = 15[nF ], L11 = 300[mH], L12 = 30[mH],
C2 = 7.5[nF ], L21 = 150[mH], and L22 = 15[mH]. In
the computer simulation, the circuit parameters are chosen as
α = 0.3, β1 = 10.0, β2 = 2.0, β3 = 20.0, γ = 2.0, and
ε = 0.01.

As a result, the same attractors were observed qualitatively
in each circuit in circuit experiment and computer simulation.

4.2. Three degrees of freedom chaotic circuit
In this study, we change the number of Inaba’s circuit con-

nected from two to three. We show the experimental and com-
puter simulation results of three degrees of freedom chaotic
circuit. Figure 5 (a) is the result of the top circuit from cir-
cuit experiment. Figure 5 (b) is the result of the top circuit
from computer simulation. Figure 6 (a) is the result of the
middle circuit from circuit experiment. Figure 6 (b) is the re-
sult of the middle circuit from computer simulation. Figure 7
(a) is the result of the bottom circuit from circuit experiment.
Figure 7 (b) is the result of the bottom circuit from computer
simulation.
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Fig. 5 Chaotic attractors in the top circuit.
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Fig. 6 Chaotic attractors in the middle circuit.
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Fig. 7 Chaotic attractors in the bottom circuit.

In the circuit experiment, the circuit parameters are chosen
as C1 = 15[nF ], L11 = 300[mH], L12 = 30[mH], C2 =
7.5[nF ], L21 = 150[mH], L22 = 15[mH], C3 = 5[nF ],
L31 = 100[mH], and L32 = 10[mH]. In the computer
simulation, the circuit parameters are chosen as α = 0.3,
β1 = 10.0, β2 = 2.0, β3 = 20.0, β4 = 3.0, β5 = 30.0,
γ1 = 2.0, γ2 = 3.0, and ε = 0.01.

Comparing the results of two degrees and three, attractors
are similar in shape, and become more complex.

4.3. Poincare map
We show simple Poincare maps in Figs. 8 - 10. We exam-

ine the behavior of the point when the periodic trajectory re-
peatedly passes through the cut surface in the computer sim-
ulation. Figure 8 (a) is the result of the top circuit in two
degrees of freedom chaotic circuit. Figure 8 (b) is the result
of the top circuit in three degrees of freedom chaotic circuit.
Figure 9 (a) is the result of the middle circuit in two degrees of
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freedom chaotic circuit. Figure 9 (b) is the result of the mid-
dle circuit in three degrees of freedom chaotic circuit. Figure
10 (b) is the result of the bottom circuit in three degrees of
freedom chaotic circuit.
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Fig. 8 Poincare map in the top circuit.
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Fig. 9 Poincare map in the middle circuit.
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Fig. 10 Poincare map in the bottom circuit.

In two degrees of freedom chaotic circuit, the circuit pa-
rameters are chosen as α = 0.3, β1 = 10.0, β2 = 2.0,
β3 = 20.0, γ1 = 2.0, and ε = 0.01. In three degrees of
freedom chaotic circuit, the circuit parameters are chosen as
α = 0.3, β1 = 10.0, β2 = 2.0, β3 = 20.0, β4 = 3.0,
β5 = 30.0, γ1 = 2.0, γ2 = 3.0, and ε = 0.01.

Looking at the attractor, the result was similar, but there
was a difference by creating Poincare map. Comparing the
figures, it can be seen that when the number of circuits is
increased, the order is especially broken in the top circuit.

5. Conclusion
In this study, we have investigated comparison of the com-

plexity of chaos generated in multiple Inaba’s circuit in se-
ries. We have increased the number of connected subcir-
cuits from two to three in order to produce more complex

chaos. We have evaluated the complexity using attractors ob-
tained by circuit experiment and computer simulation, and
Poincare maps obtained by computer simulation. Focusing on
the chaotic attractor, more complex chaos is generated in the
new connected circuit. However, when comparing the same
circuits, it seems that there is not much difference. Next,
when the Poincare map is observed, it can be seen that the
complexity is high because the order is broken, especially in
the top circuit. From the results, we confirmed that the chaos
generated in some circuits are more complex.

As our future work, we will conduct rigorous analysis of
the chaos generated in chaotic circuits and research on vari-
ous network types. In a rigorous analysis, we will show the
bifurcation phenomenon in a diagram and aim to visualize the
route from the periodic solution to the chaotic solution [7]. In
research on various network types, we will investigate inter-
actions between systems [8].
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