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Abstract

This paper considers the change of dynamical behavior with
higher dimensions in four dimensional hyperchaotic systems.
In particular, we focus on the shape and the complexity of
chaotic attractors by changing the number of inductors and
capacitors in the circuit. By means of the computer sim-
ulation and circuit experiment, the changes in the shape of
chaotic attractors are investigated. Further, by means of
poincaremap, the changes in the complexity of attractors are
investigated. From the these results, it is shown that the sys-
tem becomes more complex with the system becomes higher
dimensions.

1. Introduction

Chaos is phenomena that exist close to us. For example,
natural phenomena and neurons which build the brain and so
on. From these viewpoints, the study of chaos has attracted a
great attention from various fields such as natural science, bi-
ology and engineering. Particularly in the engineering field,
confidential communications [1] which using the randomness
of chaos, and a brain-type computer that incorporates brain
information processing into a computer are expected and re-
searched. Further in these studies, analysis of high dimen-
sional systems that combine many elements is important. In
recent years, the studies on the behavior in high dimensional
systems and complex networks [2] - [3] that interconnect sys-
tems are conducted.

We focus on the systems that generate hyperchaos. Hy-
perchaos is generated from high dimensional systems with a
minimum dimension of four [4] - [5]. In this study, we use
the four dimensional hyperchaotic system proposed by Nishio
et al. [6]. In this system, the results show that the resonant
frequency governing the diode is related with generation of
hyperchaos. Therefore, we change dimensions by increasing
the number of inductors and capacitors and investigate the
changes of dynamics.

2. Extreamely simple hyperchaos generators

Figure 1 shows the chaotic circuit which generates hyper-
chaos [6]. This circuit consists of a negative resistor, two in-
ductors, two capacitors and one diode. This circuit is a system
that can generate hyperchaos very simple because nonlinear
element in the circuit is only one diode.

Figure 1: Chaotic circuit.

The circuit equations are given as follows:



C1
dv1
dt

= i1 − id

C2
dv2
dt

= i2 − i1

L1
di1
dt

= v2 − v1

L2
di2
dt

= −v2 + ri2.

(1)

where the v − i characteristics of the diode are approximated
as follows:

iD =
1

2
G (|vk − E|+ vk − E) . (2)
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By using the parameters and the variables:

v1 = Ex1, v2 = Ex2, t =
√

L1C1τ

i1 =

√
L1

C1
Ex3, i2 =

√
L1

C 1
Ex4, ε =

1

G

√
C1

L1

γC =
C1

C2
, γL =

L1

L2
, α = R

√
L1C1

L2
.

The normalized circuit equations are given as follows:



ẋ1 = x3 − f(x1)

ẋ2 = γC(x4 − x3)

ẋ3 = x2 − x1

ẋ4 = −γLx2 + αx4.

(3)

where the parameter f(x) is the equation for the diode and
described as follows:

f(x) =
1

2
ε−1 (|x− 1|+ x− 1) . (4)

We set the values of parameters. Computer simulation
for γC = 0.47, γL = 0.4, α = 0.16, ε = 0.01. Cir-
cuit experiment for L1 = 20[mH], L2 = 50[mH], C1 =
0.022[µF ], C2 = 0.047[µF ].

At this time, in the circuit of Fig. 1, the value of inductors
and capacitors are set such that L2 > L1, C2 > C1.

3. System model

Figure 2 shows the chaotic circuit which one inductor and
one capacitor are added to Fig. 1.

-r

L3 L2 L1i3 i2 i1 iD

v3 v2 v1C3
C2 C1

Figure 2: Proposed model 1.

By using the parameters and the variables:

v1 = Ex1, v2 = Ex2, v3 = Ex3, t =
√
L1C1τ

i1 =

√
L1

C1
Ex4, i2 =

√
L1

C 1
Ex5, i3 =

√
L1

C 1
Ex6

γC1 =
C1

C2
, γC2 =

C1

C3
, γL1 =

L1

L2
, γL2 =

L1

L3

α = R

√
L1C1

L2
, ε =

1

G

√
C1

L1
.

The normalized circuit equations are given as follows:



ẋ1 = x4 − f(x1)

ẋ2 = γC1(x5 − x4)

ẋ3 = γC2(x6 − x5)

ẋ4 = x2 − x1

ẋ5 = γL1(x3 − x2)

ẋ6 = −γL2x3 + αx6.

(5)

We set the values of parameters. Computer simulation
for γC1 = 0.45, γC2 = 0.21, γL1 = 0.5, γL2 = 0.4, α =
0.06, ε = 0.01. Circuit experiment for L1 = 10[mH], L2 =
20[mH], L3 = 50[mH], C1 = 0.010[µF ], C2 =
0.022[µF ], C3 = 0.047[µF ].

At this time, in the circuit of Fig. 2, the value of inductors
and capacitors are set such that L3 > L2 > L1, C3 > C2 >
C1.

Figure 3 shows the chaotic circuit which two inductors and
two capacitors are added to Fig. 1.

Figure 3: Proposed model 2.
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By using the parameters and the variables:

v1 = Ex1, v2 = Ex2, v3 = Ex3, v4 = Ex4

i1 =

√
L1

C1
Ex5, i2 =

√
L1

C 1
Ex6

i3 =

√
L1

C 1
Ex7, i4 =

√
L1

C 1
Ex8, t =

√
L1C1τ

γC1 =
C1

C2
, γC2 =

C1

C3
, γC3 =

C1

C4

γL1 =
L1

L2
, γL2 =

L1

L3
, γL3 =

L1

L4

α = R

√
L1C1

L2
, ε =

1

G

√
C1

L1
.

The normalized circuit equations are given as follows:



ẋ1 = x5 − f(x1)

ẋ2 = γC1(x6 − x5)

ẋ3 = γC2(x7 − x6)

ẋ4 = γC3(x8 − x7)

ẋ5 = x2 − x1

ẋ6 = γL1(x3 − x2)

ẋ7 = γL2(x4 − x3)

ẋ8 = −γL3x4 + αx8.

(6)

We set the values of parameters. Computer simulation
for γC1 = 0.47, γC2 = 0.21, γC3 = 0.1, γL1 = 0.5, γL2 =
0.25, γL3 = 0.1, α = 0.03, ε = 0.01. Circuit experiment
for L1 = 5[mH], L2 = 10[mH], L3 = 20[mH], L4 =
50[mH], C1 = 0.0047[µF ], C2 = 0.010[µF ], C3 =
0.022[µF ], C4 = 0.047[µF ].

At this time, in the circuit of Fig. 3, the value of inductors
and capacitors are set such that L4 > L3 > L2 > L1, C4 >
C3 > C2 > C1.

4. Computer simulation and circuit experiment

First, we compare the shape of attractors from the results
obtained from computer simulations and circuit experiments.
In this study, we measure the voltage values of two capacitors
close to negative resistor and diode in each circuit and show
to attractors. Figure 4(a) shows the attractors which obtained

from the circuit of Fig. 1. Figure 4(b) shows the attractors
which obtained from the circuit of Fig. 2. Figure 4(c) shows
the attractors which obtained from the circuit of Fig. 3. Fur-
ther the figures of left side show the results of circuit exper-
iment and the figures of right side show the results of com-
puter simulation in Fig. 4. In this results, we confirmed that
the shape of attractors does not change so much. That is, it is
confirmed that a slight increase in dimensions do not signifi-
cantly affect the shape of the attractors.

x2

x1

v2

v1

(a) Attractors obtained from the circuit of Fig. 1.

x3

x1

v3

v1

(b) Attractors obtained from the circuit of Fig. 2.
(Proposed model 1)

x4

x1

v4

v1

(c) Attractors obtained from the circuit of Fig. 3.
(Proposed model 2)

Figure 4: Attractors by the computer simulation and circuit experi-
ment.

5. Poincaremap

Second, we compare the complexity of attractors by using
poincaremap. The poincaremap is obtained by setting a plane
that crosses the trajectory of the attractor. Further it is used
to analyze the local properties of attractors by plotting points
when the trajectory intersects the plane. For example, when
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the attractor has one periodic trajectory, it is expected that the
trajectory always intersects the plane at the same position.
On the other hand, when the attractor has multiple trajecto-
ries, it is expected that the trajectories intersect the plane at
various positions. That is, the attractor has a complex trajec-
tory and many points are plotted on the plane. Focusing on
this property, we evaluate the complexity of attractors using
poincaremap. Figure 5(a) shows the attractors obtained from
the circuit of Fig. 1. Figure 5(b) shows the attractors obtained
from the circuit of Fig. 2. Figure 5(c) shows the attractors
obtained from the circuit of Fig. 3. Further the figures of left
side show the attractors and the figure of right side show the
attractors of poincaremaps in Fig. 5. In this results, we con-
firmed that many points are plotted extensively in Fig. 5(b)
and Fig. 5(c). Therefore, it is confirmed that the attractors
which obtained from the circuits with increased dimensions
become complex.

x2

x4 x4

x2

(a) Attractors obtained from the circuit of Fig. 1.

x6 x6

x3 x3

(b) Attractors obtained from the circuit of Fig. 2.
(Proposed model 1)

x4 x4

x8 x8

(c) Attractors obtained from the circuit of Fig. 3.
(Proposed model 2)

Figure 5: Attractors by the computer simulation.

6. Conclusion

This study investigated the change of behavior with higher
dimensions in four dimensional hyperchaotic systems. In par-
ticular, we focus on the shape and the complexity of chaotic
attractors by changing the number of inductors and capaci-
tors. By means of the computer simulation and circuit exper-
iment, the change in the shape of attractors are investigated.
Further, by means of poincaremap, the change in the com-
plexity of attractors are investigated. First, from the results
of the computer simulation and circuit experiment, we con-
firmed that the shape of attractors did not change so much.
Next, from the results of poincaremap, we confirmed that the
complexity of attractors changed with increased dimensions.
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