
Amplitude Change of Coupled van der Pol Oscillators

in Three-Dimensional Space

Yoko Uwate and Yoshifumi Nishio

Dept. of Electrical and Electronic Engineering, Tokushima University

2-1 Minami-Josanjima, Tokushima, Japan

Email: {uwate, nishio}@ee.tokushima-u.ac.jp

Abstract—The study of Amplitude Death (AD) and am-

plitude change are important for understanding the control

mechanisms and efficient regulators of a system’s dynam-

ics. Previously, the mechanism of AD observed from two-

dimensional coupled polygonal oscillatory networks was

made clear by using mathematical analysis. In this study,

we extend the polygonal oscillatory networks to three-

dimensional space. We investigate the occurrence of AD

by increasing the number of oscillators.

1. Introduction

Synchronization phenomena in coupled oscillators are

suitable models for analyzing a number of natural occur-

rences [1],[2]. Therefore, many researchers have proposed

different coupled oscillatory networks, and some interest-

ing synchronization phenomena have been discovered [3]-

[6].

Oscillation quenching (oscillation and amplitude death),

another fundamental emergent phenomenon in coupled

nonlinear systems, can be caused by several factors [7],[8].

Amplitude death (AD) occurs in strongly coupled nonlin-

ear oscillators when their interaction causes a pair of fixed

points to become stable and attracting. Setou et al. reported

AD in ring coupled oscillators when the frequencies of the

coupled units differ [9].

We have investigated synchronization phenomena

in coupled polygonal oscillatory networks that share

branches [10], [11]. In this system, van der Pol oscilla-

tors are connected to every corner of each polygonal net-

work. The first and the second oscillators, which are con-

nected to both polygonal networks, are called “shared os-

cillators,” and each polygonal network has an odd number

of oscillators. We then observe N-phase synchronization.

Through computer simulations and theoretical analysis, we

confirmed that the coupled oscillators tended to synchro-

nize to minimize the power consumption of the whole sys-

tem. The phase difference of the shared oscillators was

determined by finding the minimum value of the power

consumption function. Additionally, we proposed a new

polygonal circuit system that includes actual inductor mod-

els (with loss) at all ground parts [12]. Synchronization

phenomena in coupled polygonal oscillatory networks with

strong frustration are investigated. Strong frustration is re-

alized using conflicting coupling organization in the net-

work and by increasing the coupling strength.

We confirmed that the amplitude of the oscillators de-

creases as the value of the coupling strength increases, and

that AD occurs in the polygonal oscillatory networks. If

one of the polygonal networks is triangular, we observe

global AD. However, for other types of networks, AD ap-

pears in a complicated way. First, AD occurs at the oscilla-

tors located farthest from the shared oscillators. Next, AD

occurs simultaneously in all other oscillators as the cou-

pling strength increases. We explained the mechanism by

which AD occurs using a theoretical approach.

In this study, we investigate the occurrence of AD

of coupled polygonal oscillatory networks in three-

dimensional space. For considering the three-dimensional

networks, the number of polygonal network is increased

by three-dimensional way. By using computer simula-

tions, we observe similar AD phenomena in the proposed

three-dimensional coupled polygonal network with previ-

ous studies.

2. Coupled Oscillatory Networks in Two-Dimensional

Space [12]

In our previous study, we investigated AD in two cou-

pled oscillatory networks in two-dimensional space. Two

polygonal oscillatory networks are coupled by sharing a

branch. Examples of the network models used in the pre-

vious study are shown in Fig. 1. Here, the 3–3 and 5–

5 coupling networks are symmetric models. In this cir-

cuit model, we consider the coupling method in which two

adjacent oscillators tend to synchronize in the anti-phase

state. The number of oscillators coupled to left and the right

polygonal networks is set to odd numbers to produce anti-

phase synchronization between adjacent oscillators. The

first and second oscillators, which are connected to both

sides of the polygonal networks, are called “shared oscilla-

tors.”

Figure 2 shows the circuit model of the 3–3 coupling

network. The earth resistances are inserted to the 3rd and

4th oscillators to model actual inductors and realize sym-

metry in the circuit network model. Tiny resistors (rm) are

inserted to avoid an L-loop in the computer simulations.

Next, we develop an expression for the circuit equations
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(a) 3–3 coupling network. (b) 5–5 coupling network.

Figure 1: Two coupled oscillatory networks.
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Figure 2: Coupling model (3–3 coupling network).

of the N–M coupling oscillatory network. The vk−iRk char-

acteristics of the nonlinear resistor are approximated by the

following third-order polynomial equation:

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (1)

(k = 1, 2, 3, ...,N + M − 2).

Using the variables and parameters
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(k = 1, 2, 3, ...,N + M − 2),

the normalized circuit equations governing the circuit are

expressed as:
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(k = 1, 2, 3, ...,N + M − 2).

(2)

In this equation, γ is the coupling strength, ε denotes the

nonlinearity of the oscillators, and y denotes the current of

the inductor of the connected oscillator with the kth oscil-

lator. For the computer simulations, we calculate Eq. (2)

using the fourth-order Runge–Kutta method with step size

h = 0.005. We set the parameters of this circuit model to

ε = 0.1 and η = 0.0001. The coupling strength γ between

the oscillators changes from a small to a large value.

Figure 3 shows the change in amplitude according to the

size of the network. In the case of the 3–3 coupling net-

work, global AD occurs at the same time, whereas in the

5–5 coupling network, AD first occurs in the oscillators lo-

cated farthest from the shared oscillators, and then the other

oscillators stop oscillating at the same time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5

am
pl

itu
de

γ

x1 (1st osc.)
x3 (3rd osc.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5

am
pl

itu
de

γ

x1 (1st osc.)
x3 (3rd osc.)
x4 (4th osc.)

(a) 3–3 coupling network. (b) 5–5 coupling network.

Figure 3: Amplitude change in two-dimensional coupled

oscillatory networks.

3. Coupled Oscillatory Networks in Three-

Dimensional Space

Here, we investigate the amplitude change of the os-

cillators when the system model is extended to three-

dimensional space. Two types of network models are pro-

posed as shown in Fig. 4. The first model is composed of a

triangular network. We investigate the change in amplitude

when the triangular network is increased in three dimen-

sions around the shared oscillators as shown in Fig. 4 (a).

The second model is composed of a pentagonal network

(Fig. 4 (b)). Similar to the triangular network, the change in

amplitude when the pentagonal network is increased three-

dimensionally around the shared oscillators is investigated.

In the proposed circuit model, N denotes the total number

of oscillators.
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Figure 4: Coupled oscillatory networks in three-

dimensional space.

Figure 5 shows the simulation results of amplitude

change with the coupling strength. From these results, it

was found that global AD was observed in the same way

as in the case of a triangular oscillatory network connected

two-dimensionally. When N = 5, the change in the ampli-

tudes of the shear oscillator and other oscillators is almost

equal. As the value of N increases, the difference between

the sheared and other oscillators appears. The shared oscil-

lator changes two-dimensionally, and the other oscillators

decrease linearly. It can also be seen that as N increases,

the coupling strength at which AD occurs increases. The

coupling strength at which AD occurs with N is shown

in Fig. 6. We confirm that the coupling strength almost

changes linearly.

Next, Fig. 7 shows the simulation results of amplitude

change of system model using pentagonal networks with

the coupling strength. From these results, it was found

that partial AD was observed in the same way as in the

case of a pentagonal oscillatory network connected two-

dimensionally. First, the oscillation death of the oscilla-

tors located farthest place from the shared oscillators is oc-

curred. After that, the other oscillators stop to oscillate at

same time. It can also be seen that as N increases, the cou-

pling strength at which AD occurs increases. The coupling

strength at which AD occurs with N is shown in Fig. 8. We

confirm that the coupling strength almost changes linearly

when N is smaller than 32. While, when N is larger than

35, two types of oscillators stop their oscillation at same

time.
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(a) N=5. (b) N=7.
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Figure 5: Amplitude change in three-dimensional coupled

oscillatory networks (triangular oscillatory network).

4. Conclusions

In this study, we investigated the occurrence of AD

observed from coupled oscillatory networks in three-

dimensional space. Two types of network models are pro-

posed. The first models is composed of a triangular net-

work and the second model is composed of a pentagonal

network. By using computer simulations, we observed sim-

ilar AD phenomena in the coupled oscillatory network in

three-dimensional space with two-dimensional space. In

the case of a system model composed of a triangular net-
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Figure 6: Coupling strength of AD occurrence (triangular

oscillatory network).
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Figure 7: Amplitude change in three-dimensional coupled

oscillatory networks (pentagonal oscillatory network).

work, a global AD is observed, and in the case of a system

model composed of a pentagonal network, a partial AD is

observed.

For the future works, we would like to make clear the

mechanism of AD using theoretical analysis. Further in-

vestigation of AD for larger and more complex polygonal

networks is one of the future issues.
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