Synchronization in Dynamical Oscillatory Networks
with Non-Uniform Coupling Distributions

Yoko Uwate and Yoshifumi Nishio
Dept. of Electrical and Electronic Engineering, Tokushima University
2-1 Minami-Josanjima, Tokushima 770-8506, Japan
Email: {uwate, nishio} @ee.tokushima-u.ac.jp

Abstract—1In this study, synchronization observed in dynami-
cal oscillatory networks with non-uniform coupling distributions
is investigated. The coupling states (on/off) of all connections
are stochastically determined at every certain time with the
coupling probability. We focus on the heavy tail type of coupling
distribution for the network. By using computer simulations, we
confirm that the dynamical network with the heavy tail type of
coupling distribution can hardly achieve global synchronization.

I. INTRODUCTION

The synchronization phenomena observed from coupled
oscillators are suitable models to analyze the natural phe-
nomena [1],[2]. Therefore, many researchers have proposed
different coupled oscillatory networks and have discovered
many interesting synchronization phenomena [3],[4].

Recently, synchronization in dynamical networks with time-
varying topology has been extensively investigated [5],[6]
instead of static networks (i.e., network connections are fixed
constants). This is because the real-world complex networks
change their topologies with time. In these studies, novel
synchronization phenomena have been observed and theoret-
ical approaches (such as Lyapunov function [5] and basin
stability [6]) are used to explain the obtained synchronization
phenomena. However, a node in a complex network is ex-
pressed by a mathematical model in most studies of synchro-
nization of dynamical networks. Although, it is very important
to use mathematical model for the dynamical networks in
order to understand the synchronization states by approaching
theoretical methods, we also need to consider physical models
for future engineering applications.

Therefore, we have investigated synchronization in coupled
electrical circuits systems with stochastic coupling [7]. In
Ref. [7], we have confirmed that the novel synchronization
states can be observed in polygonal oscillatory networks with
on-off coupling by changing the coupling probability.

In this study, we focus on the brain networks as one of
dynamical complex networks. Because, we would like to
propose modeling of synchronization in brain by using coupled
electrical oscillatory circuits, in order to make clear the mecha-
nism of functional operation in brain. Structural and functional
brain networks are explored using graph theory and the brain
network structures have been made clear [8]. Furthermore,
Song et al. have reported that the synaptic connectivity in local
cortical circuits has heavy tail distribution [9]. We also apply
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this heavy tail characteristics of coupling distribution for the
proposed system in this study. First, a schematic diagram of a
brain network in Ref. [8] is used as a simple network model
to understand detailed synchronization phenomena. Then, we
extend the proposed network to a real brain network of the
macaque visual cortex. By using computer simulations, we
confirm that the dynamical network with heavy tail type of
coupling distribution can hardly achieve global synchroniza-
tion.

II. PROPOSED SYSTEM
A. Network Model

A network model composed of 13 nodes and 22 edges is
shown in Fig. 1. There are two important hubs in this network,
“Connector hub” and “Provincial hub”. The both hubs are
high-degree nodes. “Connector hub” shows a diverse con-
nectivity by connecting two sub-networks. “Provincial hub”
primarily connects nodes in the same sub-network.

The coupling state (on/off) of adjacent nodes is determined
stochastically. Each edge has a coupling probability (p). The
network topology is updated at every certain time (7=100). In
this study, the node is expressed by van der Pol oscillator
as shown in Fig. 2(a). The oscillators are coupled by a
resistor (see Fig. 2(b)). Namely, two coupled oscillators tend
to synchronize with in-phase state.

Provil“lcial hub

Fig. 1. Network model (node: 13, edge: 22, a schematic diagram of a brain
network [8]).

Next, we develop the expression for the circuit equations
of the network model. The vy — ig) characteristics of the
nonlinear resistor are approximated by the following third
order polynomial equation,

ik = —g1vk + gsve® (91,93 > 0), O
(k=1,2,...13).



(a) van der Pol oscillator. (b) Coupling method.

Fig. 2. Circuit model.

The normalized circuit equations governing the circuit are
expressed as
[kth oscillator]

dxy, 1 5
W:zs(l—ggck )xk—yk—v ;(yk—yn)
neSk
dy @)
dr F
(k=1,2,...13).

In these equations, 7y is the coupling strength, £ denotes the
nonlinearity of the oscillators and y,, denotes the current of
oscillators connected with kth oscillator. For the computer
simulations, we calculate Eq. (2) using the fourth-order Runge-
Kutta method with the step size h = 0.005. The parameter of
this circuit model are fixed as € = 0.1.

B. Coupling Strength Distribution

Here, we consider three different types of coupling distri-
bution for the network model as follows.

1) Uniform distribution

2) Gaussian distribution

3) Heavy tail distribution
In the case of Uniform distribution, all edges have the same
coupling strength (y = 0.02). Gaussian and Heavy tail
distributions for the simulations are shown in Fig. 3. The total
coupling strength of three different coupling distributions is
set to the same value.
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Fig. 3. Coupling strength distribution.

III. SYNCHRONIZATION RESULTS

For the computer simulations, we simulate the network for
10° time steps and we fix a certain time interval (7=100,000)
for checking final synchronization state of the network. In
order to analyze synchronization state, we define the synchro-
nization as the following equation.

lye — yn| < 0.01 (k € Sp). 3)
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For every set of parameter values of the coupling probability,
we simulate the network for 100 different distribution patterns.

A. Global Synchronization

First, we explain the simulation results of static network
model (p=1.0) for applying the three coupling distributions.
Table I summarizes global synchronization ratio of three
coupling distributions. We observe that the networks with
Uniform and Gaussian distributions achieve 100 % global syn-
chronization. While, the network with Heavy tail distributions
fails to achieve 100 % global synchronization.

TABLE I
GLOBAL SYNCHRONIZATION RATIO OF STATIC NETWORK

Coupling distribution [ Global synchronization ratio [%]

Uniform 100.00
Gaussian 100.00
Heavy tail 99.10

Figure 4 shows the coupling probability dependency of
global synchronization. We can see that three coupling strength
distribution have different characteristics for global synchro-
nization. When the coupling probability is small, the network
with Gaussian distribution has larger global synchronization
ratio than the others. The network with Uniform distribution
achieve to 100 % global synchronization, when the coupling
probability is set to p = 0.4. After that, the network with
Gaussian distribution reaches to 100 % synchronization. In
the case of the network with Heavy tail distribution, it can
hardly become 100 % global synchronization by increasing
the coupling probability.

We can say that the network with Heavy tail coupling
distribution synchronizes to avoid global synchronization. The
difference of global synchronization between the network with
Heavy tail coupling distribution and other networks becomes
large when the coupling probability is set to p=0.3 to 0.6.
Namely, the coupling distribution has a huge effect on the
dynamical networks which are not classified in the both of
random networks (p: small) and static networks (p=1.0).
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Fig. 4. Global synchronization.

B. Cluster Synchronization

Here, we focus on cluster synchronization related with
connector and provincial hubs in the network. We check the
synchronization of the edges with the both hubs. If all edges



of the connector hub are synchronized, we call the state
connector hub synchronization. Similarly, if all edges of the
provincial hub are synchronized, we call the state provincial
hub synchronization.

Figure 5 shows the simulation results of global, connector
hub and provincial hub synchronization when three coupling
strength distributions are applied to the network. In the cases
of Uniform and Gaussian coupling distributions, the differ-
ence between connector and provincial hubs synchronization
becomes 0 by increasing the coupling probability. While, in
the case of Heavy tail coupling distribution, there are some
differences between connector and provincial hubs synchro-
nization even if the coupling probability becomes large.
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Fig. 5. Cluster synchronization.

C. Synchronization Ratio of Edge

In order to investigate the effect of connector and provin-
cial hubs, we calculate average synchronization ratio for all
edges. Figure 6 shows the simulation results of three coupling
strength distributions when the coupling probability is fixed
with p=0.3. From this figure, we confirm that the edges
connected with the provincial hub are easy to synchronize.
While, the edges connected with the connector hub are difficult
to synchronize. Because the synchronization ratio of edges of
connector hub is smaller than the other edges.

D. Heavy Tail Distribution

In this section, we investigate the characteristics of Heavy
tail coupling distribution. We consider four patterns of Heavy
tail coupling distribution as shown in Fig. 7. The position of
Heavy tail is changed from v=0.07 to 0.19 (step size: 0.04).
The simulation result of global synchronization is shown in
Fig. 8. From this figure, we can see that global synchronization
ratio decreases by increasing the distance of the heavy tail
(from pattern 1 to pattern 4). Namely, we consider that the
coupling distribution of Heavy tail has important role for
global synchronization in dynamical networks.
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Fig. 6. Synchronization of all edges (p=0.3).
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IV. APPLYING REAL NETWORK IN BRAIN

Finally, the proposed network is applied to real network
model in brain. The modified brain network of the macaque
visual cortex [10] is shown in Fig. 9. This brain network is
composed of 30 nodes and 152 edges. We investigate global
synchronization of the network when three different coupling
distributions are applied. In the case of Uniform distribution,
all edges have the same coupling strength (y = 0.002).
Gaussian and Heavy tail distributions for the simulations are
shown in Fig. 10.

Fig. 9. Brain network of macaque visual cortex [10] (node: 30, edge: 152).
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Fig. 10. Coupling strength distribution.

Table II summarizes global synchronization ratio of the
static networks. We observe that the network with Uniform
distribution achieves 100 % global synchronization. While,
the network with Gaussian and Heavy tail distributions fail
to achieve 100 % global synchronization.

TABLE 11
GLOBAL SYNCHRONIZATION RATIO OF STATIC NETWORK

Coupling distribution [ Global synchronization ratio [%]

Uniform 100.00
Gaussian 99.62
Heavy tail 91.11

Figure 11 shows the simulation results of global synchro-
nization ratio. By increasing the coupling probability, global
synchronization ratio of Uniform and Gaussian coupling dis-
tributions increases. While, in the case of Heavy tail coupling
distribution, global synchronization ratio is smaller than other
coupling distributions with whole range of the coupling prob-
ability. This results have similar characteristics with the above
simple dynamical network. By applying the real brain network,
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we confirm that the effect of Heavy tail coupling distribution
can be prominently visible for the dynamical network.

It is known that serious symptom such as epilepsia can be
caused by global synchronization in brain. We consider that
Heavy tail coupling distribution has important role to avoid
serious symptom in normal brain.
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Fig. 11. Global synchronization of brain network.

V. CONCLUSION

We have investigated synchronization state in the dynamical
oscillatory networks with non-uniform coupling distributions.
We considered three different types of coupling strength;
Uniform, Gaussian and Heavy tail distributions. It was con-
firmed that the coupling distribution of Heavy tail has different
characteristics with other distributions. Namely, the dynamical
network with Heavy tail coupling distribution tends to avoid
global synchronization.

For the future work, we would like to consider the influence
of additional noises, frequency and parameter errors in order
to explain the mechanism of real brain network. Applying the-
oretical analysis to synchronization of the proposed network
is also our future work.
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