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Abstract

In this study, we investigate the spread of chaotic behavior

in coupled chaotic circuits networks. We propose two types

complex networks with hub. In each network model, the

structure is composed of coupled chaotic circuits when one

circuit is set to generate chaotic attractor and the other circuits

are set to generate three-periodic attractors. By using com-

puter simulations, when the coupling strength increase, we

have observed that the chaotic attractor spread to the other cir-

cuits. Moreover, we investigate ratio of propagation in each

proposed network by changing the initial position of chaotic

attractor. The initial position of chaotic attractor changes ac-

cording to feature quantities of node.

1. Introduction

In our society, there are many networks. These network

models have various types of feature quantities. Examples

of feature quantities are path length, degree distribution, and

clustering coefficient. Recently, network models become

more complex and larger scale. Furthermore, various types of

propagation have attracted a great deal of attention from var-

ious fields [1]. For example, the traffic jam of the transporta-

tion network and the viral infection are mentioned. Hence, it

is more difficult to analyze the phenomena in the networks.

Therefore, we consider that we can analyze various compli-

cated phenomena of complex networks by investigating the

spread of chaotic behavior. Additionally, it is important to

investigate propagation phenomena observed from coupled

chaotic circuits for future engineering applications.

In our previous studies, the synchronization phenomena

and the chaos propagation has been investigated by many re-

searches. The synchronization phenomena in complex net-

works has been reported to various fields [2]. On the other

hand, the chaos propagation have been investigated in simple

networks of chaotic circuits such as a ring combination [3].

In this paper, we investigate the spread of chaotic behav-

ior in complex network with coupled chaotic circuits. We

propose two types complex networks with hub. One is used

25 nodes and 35 edges. The other is used 50 nodes and 85

edges. In our proposed network model, one circuit is set to

generate chaotic attractor and the other circuits are set to gen-

erate three-periodic attractors. We investigate ratio of spread-

ing chaotic behavior in each networks. We change the initial

position of the chaos attractor according to network feature.

2. Circuit model

The chaotic circuit is shown in Fig. 1. This circuit consists

of a negative resistor, two inductors, a capacitor and dual-

directional diodes. This chaotic circuit is called Nishio-Inaba

circuit [4].
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Figure 1: Chaotic circuit.

The circuit equations of this circuit are described as fol-

lows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1
di

dt
= v + ri

L2
di

dt
= v − vd

C
dv

dt
= −i1 − i2,

(1)

The characteristic of nonlinear resistance is described as
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follows:

vd =
rd
2

(∣∣∣∣i2 + V

rd

∣∣∣∣−
∣∣∣∣i2 − V

rd

∣∣∣∣
)
. (2)

By changing the variables and parameters,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩
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√
L1C

L2
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√
C
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√
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γ =
1

R

√
L1

C
, t =

√
L1C2τ,

(3)

In the proposed system, each circuit is connected to only ad-

jacent circuits by the resistors. The normalized circuit equa-

tions of the system are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi

dτ
= αxi + zi

dyi
dτ

= zi − f(yi)

dzi
dτ

= −xi − βyi −
∑
j∈Sn

γ(zi − zj)

(i, j = 1, 2, · · ·, N).

(4)

In Eq. (4), N is the number of coupled chaotic circuits and γ

is the coupling strength. f(yi) is described as follows:

f(yi) =
1

2

(∣∣∣∣yi + 1

δ

∣∣∣∣−
∣∣∣∣yi − 1

δ

∣∣∣∣
)
. (5)

In this chaotic circuit, we define αc to generate the chaotic

attractor (see Fig. 2(a)) and αp is defined to generate the

three-periodic attractors (see Fig. 2(b)). For the computer

simulations, we calculate Eq. (4) using the fourth-order

Runge-Kutta method with the step size h = 0.01. In this study,

we set the parameters of the system as αc = 0.460, αp =
0.412, β = 3.0 and δ = 470.0.
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Figure 2: Attractors of chaotic circuit.

3. Network model

Figure 3 shows the proposed two types complex networks.

In our proposed network model, each chaotic circuit is cou-

pled by one resistor R. We use 25 coupled chaotic circuits

and 35 edges in Fig. 3(A). The other model use 50 coupled

chaotic circuits and 85 edges in Fig. 3(B). The feature quanti-

ties of the proposed each network are summarized in Table 1.

Moreover, Fig. 4 shows degree distribution of each network.

In this graph, vertical axis denotes the number of nodes and

horizontal axis denotes the value of degree.

Figure 3: Network model.

Table 1: Feature quantities of proposed each network.

Feature (A) (B)

The number of nodes 25 50

The number of edges 35 85

Avg. degree 2.8 3.4

Avg. path length 3.34 3.51

Avg. clustering coefficient 0.104 0.157

In this study, we define hub as the node which is the highest

value of degree. In Model-A, we define hub as 1st node. In

Model-B, we define hub as 31st node.
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Figure 4: Degree distribution of each network.

4. Simulation results

In this section, we investigate the spread of chaotic behav-

ior by increasing the coupling strength and changing the ini-

tial chaos position. In the previous studies, chaos propaga-

tion have been investigated simple network system of cou-

pled chaotic circuits [5]. Moreover, the three-periodic attrac-

tors are affected from the chaotic attractors when the coupling

strength are increasing.

In addition, we use two type network in this study. The

number of node and edge in each network is different. How-

ever, one circuit is set to generate chaotic attractor and the

other circuits are set to generate three-periodic attractors in

each network.

4.1 Model-A (25 coupled chaotic circuits)

We investigate ratio of propagation when we change the

shortest path length between the hub(1st) node and the initial

chaos position. The simulation results of ratio of propaga-

tion according to the shortest path length are shown in Fig. 5.

For example, in model-A, when the shortest path length be-

tween the hub(1st) node and the initial chaos position is 1,

we set the chaotic attractor in 2nd, 3rd, 4th, 5th, 6th, 7th or

8th node. Also, when the shortest path length is 4, we set

the chaotic attractor in 18th, 21st or 22nd node. Furthermore,

we average the ratio of propagation in each node under the

same condition. In addition, we investigate the ratio of prop-

agation in the static state when we fix coupling strength as

γ = 0.001, 0.005. Here, we define the ratio of propagation as

number of chaotic circuits of whole network at steady state.

From the result, ratio of propagation in large coupling

strength is higher than small coupling strength. When we

increase the path length between the hub(1st) node and the

initial chaos position, each three-periodic attractors are easily

affected from the chaotic attractors. Moreover, when we set

the initial chaos position in hub(1st) node, ratio of propaga-

tion is the lowest than other node.

Figure 5: Ratio of propagation according to the shortest path length

between the hub node and the initial chaos position in model-A.

4.2 Model-B (50 coupled chaotic circuits)

Next, we construct a larger scale complex network and we

investigate the ratio of propagation when we change the short-

est path length between the hub(31st) node and the initial

chaos position. The simulation results of ratio of propaga-

tion according to the shortest path length are shown in Fig. 6.

For example, in model-B, when the shortest path length be-

tween the hub(1st) node and the initial chaos position is 2,

we set the chaotic attractor in 6th, 7th, 10th, 11th, 12th, 16th,

19th, 26th, 28th, 34th, 36th, 38th, 39th, 42nd, 44th or 50th

node. Furthermore, we average the ratio of propagation in

each node under the same condition. In addition, we inves-

tigate the ratio of propagation in the static state when we fix

coupling strength as γ = 0.001, 0.005. Here, we define the

ratio of propagation as number of chaotic circuits of whole

network at steady state.

Figure 6: Ratio of propagation according to the shortest path length

between the hub node and the initial chaos position in model-B.
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From the result, the highest ratio of propagation is 88.67%
when the coupling strength γ = 0.005 and the shortest path

length is 4. As with the model-A, when we increase the path

length between the hub(31st) node and the initial chaos po-

sition, each three-periodic attractors are easily affected from

the chaotic attractors. As the path length in the initial chaos

position increases, the spread of chaotic behavior become

more easy.

Next, we investigate the spread of chaotic behavior in de-

tailed condition. When we fix the shortest path length as 2,

the ratio of propagation according to the value of degree in

each node are summarized in Fig. 7. For example, in this

condition, when the value of degree in the initial chaos po-

sition is 2, we set the chaotic attractor in 6th or 19th node.

Moreover, when we fix the shortest path length as 3, the ra-

tio of propagation according to the value of degree in each

node are summarized in Fig. 8. For example, in this condi-

tion, when the value of degree in the initial chaos position is

2, we set the chaotic attractor in 4th, 17th, 23rd, 24th, 35th or

48th node. In addition, we fix coupling strength as γ = 0.001
in each result.

Figure 7: Ratio of propagation according to degree distribution

when we fix the shortest(31st) node as 2.

Figure 8: Ratio of propagation according to degree distribution

when we fix the shortest(31st) node as 3.

From each result, when we increase the value of degree in

initial chaos position, ratio of propagation become low. In

other words, the spread of chaotic behavior become more dif-

ficult by increasing the value of degree in the initial chaos

position. Consequently, three-periodic attractors are easily

affected from the chaotic attractors when we set the initial

chaos position in faraway nod from hub and smaller value of

degree.

5. Conclusion

In this study, we have investigated spreading chaotic be-

havior in complex networks. By the computer simulations,

we investigated ratio of propagation by changing the initial

chaos position. We confirmed that chaos propagation is more

difficult when we increase the and the value of degree in the

initial chaos position. We consider that the spread of chaotic

behavior affect the low degree node. Furthermore, the low

degree node has important role in complex network.
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