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Abstract

Synchronization phenomena of frustration network by cou-

pled oscillators has been studied in a wide range of fields,

such as medicine and engineering. It is investigated towards

various systems up to now. However, analysis of regarding

more complex systems are little. In our study, we developed

the system model so that a basic minimum unit even in more

complex systems. In addition, we observed synchronization

phenomena about the system.

1. Introduction

There are a lot of synchronization phenomena in this world.

This is one of the nonlinear phenomena that we can often

observe by natural animate beings which do collective ac-

tions. For example, firefly luminescence, cry of birds and

frogs, applause of many people and so on. Synchronization

phenomena have a feature that the set of small power can

produce very big power by synchronizing at a time. There-

fore study of synchronization phenomena have been widely

reported not only engineering but also the physical and bio-

logical fields[1]–[8]. Investigation of coupled oscillators at-

tention from many researchers because coupled oscillatory

network produces interesting phase synchronization such as

the phase propagation wave, clustering and complex patterns.

In this study, we focus on the synchronization phenomena

coupled by van der Pol oscillators containing ring and star

structures. Then, we observe the synchronization phenomena

with computer simulation. van der Pol oscillator is shown in

Fig. 1.

Figure 1: van del pol oscillator.

2. System model

Figure 2 shows a system model constituted van der Pol os-

cillators (VDP-A and VDP-B). We couple each VDP-B via

inductor L and ground by coupling resistor R0. In addition,

We couple VDP-A via resistor R. VDP-A is the only one cen-

tral circuit which is connected to all VDP-B in this system by

resistor R.

Figure 2: System model.

In the computer simulations, We assume that the voltage vk

and ampere ikg characteristics of the nonlinear resistor in each

oscillator are given by the follows:

ikg = −g1vk + g3v3
k , (1)

(g1, g3 > 0),

(k = 1, 2, 3, ...,N),

The characteristic of ring coupling has in-phase, anti-phase

and N-phase. The characteristic of star coupling has in-phase

and anti-phase.
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First, the circuit equations of VDP-A are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
C

dvk

dt
= −in − i1g +

1

R
((N − 1)vk −

N∑
n=2

vn),

L
di1
dt
= vk,

(2)

(n = 2, 3, ...,N),

where N denotes the number of VDP-B.

On the other hand, VDP-B is connected to the adjacent VDP-

B and VDP-A. The circuit equations of VDP-B are given as

follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
dvn

dt
= −ikg − inR − ina − inb,

2L
dina

dt
= vn − R0(ina + i(n+1)b),

2L
dinb

dt
= vn − R0(inb + i(n−1)a).

(3)

By using the parameters and variables as follows:

in =

√
g1C
3g3L

yc, ina =

√
g1C
3g3L

yn, inb =

√
g1C
3g3L

zn,

vk =

√
g1

3g3

xc, vn =

√
g1

3g3

xn,

t =
√

LCτ, “ · ” = d
dτ
, α = g1

√
L
C
,

β =
1

R

√
L
C
, γ = R0

√
C
L
,

(4)

where α is the nonlinearity, β is the coupling strength, γ in-

dicates the resistive component and yn denotes the current of

neighbor oscillator on coupling resistor R0. The normalized

circuit equations of VDP-A are given as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ ẋc = αxc

(
1 − 1

3
x2

c

)
−yc + β

{
(N − 1)xc −

N∑
n=2

xn

}
,

ẏc = xc.

(5)

The normalized circuit equations of VDP-B are given as fol-

lows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ẋn = αxn(1 − 1

3
x2

n) − yn − zn − β(xc − xn),

ẏn =
1

2
{xn − γ(yn + zn+1)},

żn =
1

2
{xn − γ(yn + zn−1)}.

(6)

3. Simulation Result

We calculate Eqs. (5) and (6) using the Runge-Kutta

method with the step size h = 0.02. We show the simula-

tion result of the synchronization phenomena when N = 5 in

Fig. 3. In this figure, We show the attractor of each oscillator

and the horizontal axis is the voltage of each oscillator, and

the vertical axis is the electric current of each oscillator. We

set the parameters α = 0.1, β = 0.0075 and γ = 0.02. In addi-

tion, We show the system model of N = 4 in Fig. 4.

Figure 3: Attractor between adjacent oscillators (horizontal

axis:xk, vertical axis:yk) (k = 1, 2, 3, 4, 5).

Figure 4: System model of N = 4.

Next, the time waveforms of the voltage of each capacitor

C after sufficient time has elapsed are shown in Fig. 5. And

the phase differences between the adjacent oscillator of this

case is equal to the result as shown in Fig. 6. It seems that

- 286 -



two electric currents of VDP-B are piled up as we understand

it from the figures like 3 phase.

Figure 5: The Time waveforms of the each oscillator for N =
4.

Figure 6: Lissajous figures of N = 4.

Second, the simulation results of the system model con-

taining six circuits are shown in Fig. 7. The value of the

parameters are fixed with β=0.001, 0.0085 and 0.05. In the

case of β=0.001, 5 phase synchronization appeared because

the coupling strength of VDP-A is weak. The current of the

VDP-A and one of the current of the VDP-B are in phase

at that time. Therefore, we assume 5 phase synchronization.

When the value of β sets 0.0085, some time waveforms of

VDP-B come close on in-phase synchronization. When we

increase coupling strength, most of two electric currents of

VDP-B are piled up as we understand it from the Lissajous

figures.

In the case of β=0.05, 5 phase synchronization become in-

phase synchronization. And then VDP-A becomes anti-phase

synchronization with VDP-B by increasing the value of β.
We understand that VDP-B synchronizes even if we read ei-

ther figure.

(a) β=0.001.

(b) β=0.0085.

(c) β=0.05.

Figure 7: Simulation Results for N=6 (α = 0.1 and γ = 0.02). time-

waveform. Red and other colors denote x1 and xn respectively.(n =
2,3,...,6)

Finaly, we summarize the simulation results in Fig. 8. In

the figure, we show the results when we increase the circuit

numbers N = 3, 4, ..., 7. The phase difference is based on one

voltage waveform of VDP-B. The broken line in the figure

represent asynchronous. The solid line in the figure repre-

sent synchronous. From this result, It turns out that an even

number circuits become in-phase as increasing the coupling

strength. Similarly, It turns out that an even number circuits
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become in-phase as increasing the coupling strength. How-

ever, we could’t confirm the synchronization state between

β=0 and β=0.016 in an odd number circuits.

Figure 8: Relationship between coupling strength and phase differ-

ence.

4. Conclusion

In this study, we have proposed a system model using six

circuits that is combined the ring and star structures. We

have observed the synchronization phenomena by increasing

the coupling strength of ring. When the coupling strength

is sufficiently small, system model becomes like function of

ring coupling therefore, 5 phase synchronization can be ob-

served. By increasing the coupling strength, time wave forms

of VDP-B have come close in-phase synchronization. When

the coupling strength is sufficiently large, time wave forms of

VDP-A and VDP-B become anti-phase synchronization. In

the future, we investigate synchronization phenomena using

other circuits.
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