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Abstract—In many cases, mutual synchronization systems
consisting of a large number of oscillators are used for practical
model. In this work, we investigate synchronization phenomena
observed by adding different frequency van der Pol oscillators
coupled with star combination. By computer simulations, we
confirm some of oscillators in the system are synchronized at
anti-phase.

I. INTRODUCTION

Synchronization has grown to a considerable research field
in recent years. Synchronization phenomena in large popula-
tions of interacting elements are the subject of intense research
efforts in physical, biological, chemical, and social systems.
The synchronization in the research is one of the basic phe-
nomena of nature and it is observed over a wide range of fields
for example: human applause, digital telephony, video, digital
audio, frogs, etc. In addition, in the organism, synchronization
phenomena has been observed in the activity of the brain and
the operation of the heart. It is considered to have become
an important role. In the future, analysis of brain activity and
analysis of heart activity are very important. Its application to
engineering fields such as the realization of brain computer is
expected.

Now, synchronization phenomena have been studied by
many researchers in various field: two van der Pol oscillators
coupled by chaotically varying resistor [1], synchronization in
coupled van der Pol oscillators involving periodically forced
capacitors [2], comparing two-layer CNN with van der Pol
oscillators coupled by inductors [3], group synchronization of
van der Pol oscillators with different frequencies [4], stochastic
bifurcations in a bistable Duffing−van der Pol oscillator with
colored noise [5], synchronization and anti-synchronization of
chaos in an extended Bonhoffer−van der Pol oscillator using
active control [6].

In coupled oscillators, synchronization phenomena depend
on the type of coupling. When two identical oscillators are
coupled, there are two basic possibilities of synchronization:
in-phase synchronization and anti-phase synchronization.

In this study, we investigate the effect to three star-coupled
oscillators by adding another oscillator with different fre-

quency. In this work, we confirm the case of four oscillators
and the case of five oscillators in the system. First, we
change the parameter α of the fourth oscillator and investigate
the effect to the star-coupled circuits with three oscillators.
Next, we add the fifth oscillator and investigate the effect to
the star-coupled oscillators. We consider that many unknown
phenomena remain in such systems. Therefore, it is very
important to investigate such systems.

II. CIRCUIT MODEL WITH FOUR OSCILLATORS

�

Fig. 1. Circuit model.

The circuit model used in the first pattern is shown in
Fig. 1. Three van der Pol oscillators are connected as the
star combination. In addition, we add a different frequency
oscillator to the star-coupled van der Pol oscillators. We
change the frequency of the 4th oscillator and investigate the
influence of the 4th oscillator to the overall star circuit.

Firstly, the v− iRk characteristics of the nonlinear resistors
are defined as follows:

iRk = −g1vk + g3v
3
k. (1)
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By changing the variables and the parameters:

vk =

√
g1
3g3

xk, ik =

√
Cg1
3Lg3

yk, α =
1

ω2
, t =

√
L1Cτ (2)

and defining:

δ0 = R0

√
C

L
, δ1 = R1

√
C

L
, ε = g1

√
L

C
. (3)

The normalized circuit equations are represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxk

dτ
= ε(xk − 1

3x
3
k)− yk − zk (k = 1, 2, 3)

dyk
dτ

= 1
2xk − 1

2δ0(y1 + y2 + y3) (k = 1, 2, 3)

dzk
dτ

= 1
2xk (k = 1, 2, 4)

dz3
dτ

= 1
2x3 − δ1(z3 + y4)

dx4

dτ
= ω2(ε(x4 − 1

3x
3
4)− y4 − z4)

dy4
dτ

= 1
2x4 − 1

2δ1(z3 + y4)

(4)

where ε is the nonlinear intensity.

III. SIMULATION RESULT

We use Runge-Kutta method to calculate the values of x,
y and their phase difference. We investigate synchronization
phenomena of the oscillators by using computer simulation
with ε=0.03, δ0=0.1 and δ1=0.3. We investigate the change of
varying ω. Figures 2 to 4 show the simulation results.

In Fig. 2, in the case of ω =1, the all four oscillators
oscillated. Only between the 3rd oscillator and the 4th os-
cillator are synchronized at anti-phase. Consequently, we did
not see the effects of ω to the star-coupled circuit. And then,
as ω increases to 1.2, the oscillations of the 3rd and the 4th
oscillators stop, namely oscillation death appears as Fig. 3.
In that moment, the 1st oscillator and the 2nd oscillator
synchronize at anti-phase. By these result, we can see the
effect of α to the star-coupled oscillators.

In Fig. 4, the 4th oscillator oscillates again and the ampli-
tude increase by increasing ω. When the value of ω above 1.2,
frequency of the 4th oscillator becomes faster.

The amplitudes of the oscillator are shown in the Figs. 5
and 6. In Fig. 5, ω is changed inside a large range value
[1.0,2.0]. As the result, the amplitudes of the 1st and the 2nd
oscillator unchanged. Therefore, frequency is not effect to the
star-coupled oscillators.

In Fig. 6, when the ω increase from 1 to 1.2, the amplitudes
of the 3rd and the 4th oscillator become gradually smaller.
Next, when the ω is increased to 1.4, the amplitudes of the
3rd and the 4th oscillator are perfect stop. When ω above
1.4, the amplitude of the 4th oscillator goes up. However, the
amplitudes of the 3rd oscillator are almost unchanged.

Fig. 2. Simulation result (ω=1).

Fig. 3. Simulation result (ω=1.2).

Fig. 4. Simulation result (ω=2).
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Fig. 5. Amplitude of oscillator 1 and oscillator 2.

Fig. 6. Amplitude of oscillator 3 and oscillator 4.

IV. FIVE OSCILLATORS CASE

�

�

Fig. 7. Circuit model with five oscillators.

Next, we use a circuit model in Fig. 7. This system has five
oscillators. We add the 5th oscillator in this system. We change
the frequency of the 4th and the 5th oscillators and investigate
their influence to the overall star-coupled oscillators.

In this system, the values of frequency α1 and α2 are
normalized as Eq. (5)

αi =
1

ω2
i

(i = 1, 2) (5)

We investigate synchronization phenomena with ε = 0.03,
δ0=0.1, δ1=0.3 and δ2=0.3 as varying ω1 and ω2. The simu-
lation results are shown in Fig. 8 to Fig. 12.

In the case of ω1=1 and ω2=1, from before result we
can imagine no effect from ω1 and ω2 to the star-coupled
oscillators and that all of the five oscillators oscillate. Between
the 3rd oscillator and the 4th oscillator, the 2nd oscillator and
the 5th oscillator, the phase difference is synchronized at anti-
phase.

In Fig. 8, the phase difference between the 3rd oscillator
and the 4th oscillator, the 2nd oscillator and the 5th oscillator
are quasi synchronized at anti-phase. The phase difference
become asynchronous between the 1st oscillator and the 3rd
oscillator, the 2nd oscillator and the 5th.

In the next case, we increase only ω1 to 1.1 and ω2

remains 1. Now, we observe the effect of ω to the star-coupled
oscillators. Oscillations of the 3rd oscillator and 4th oscillator
become small.

From the result in Fig. 10, the 1st, the 2nd and the 5th
oscillators oscillate and the 3rd and the 4th oscillators stop,
namely oscillation death appear. The phase difference between
the 1st oscillator and the 2nd oscillator, the 2nd oscillator
and the 5th oscillator become synchronized at anti-phase
completely.

Fig. 8. Simulation result (ω1=1, ω2=1).

Fig. 9. Simulation result (ω1=1.1, ω2=1).

Fig. 10. Simulation result (ω1=1.2, ω2=1).

In Fig. 11, we increase not only ω1, but also ω2 to 1.2.
Frequency is given a strong influence on circuit. Only the 1st
oscillator still oscillate and the remaining oscillators stop.

978-1-5090-1570-2/16/$31.00 ©2016 IEEE 631 APCCAS 2016



In Fig. 12, if we still increase ω2 to 2.5, oscillation of the
5th oscillator also starts again. Frequency of the 5th oscillator
becomes faster when ω2 is 1.2 and higher.

Fig. 11. Simulation result(ω1=1.2, ω2=1.2).

Fig. 12. Simulation result (ω1=2.36, ω2=1.6).

V. CONCLUSION

In this study, we have investigated synchronization phenom-
ena and oscillators of four and five oscillators with differ-
ent frequencies. By carrying out computer simulations, we

confirmed oscillation of the oscillator stop in some range
of the frequency. When the frequency of the 4th and 5th
oscillator is varied, oscillation of some oscillator stop, namely
oscillation death appear. By increasing the frequencies, the
attractor becomes asynchronous states.

For the future work, we would like to increase the number
of the oscillators to six and to change the star combination
to the ring combination. We also would like to do real circuit
experiments to confirm the results.
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