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Abstract—Synchronization states can be observed in coupled
circuits. Further, interesting synchronization states were con-
firmed in coupled chaotic circuits containing time delay. In this
study, we investigate the novel coupling methods and synchroniza-
tion states observed in coupled chaotic circuits containing time
delay. The novel coupling methods is a ring of coupled chaotic
circuits with one-direction delay effects. Synchronization state
observed the novel coupling methods is switching synchronization
state. The switching synchronization state is changed by time
delay of each subcircuit. We focus on relationships between
switching synchronization state and the pattern of time delay.
Moreover, we investigate the cycle of switching synchronization
state.

I. INTRODUCTION

Studies on synchronization state are extensively carried
out in various fields [1]-[3]. Recently, in particular, synchro-
nization states in chaotic oscillators are studied by many
researchers. Behavior of chaotic oscillators is interesting. Then,
chaos phenomena are quite dependent on initial values and not
periodical and predictable. Moreover the synchronization states
have caused very interesting phenomena. Synchronization and
the related bifurcation of chaotic systems are good methods to
describe various high-dimensional nonlinear phenomena in the
field of natural science. However, many synchronization states
of coupled chaotic oscillators have not been solved yet. The
synchronization phenomena in electric circuit make clear the
mechanism of the synchronization phenomena in our daily life.
There are many nonlinear systems containing time delay, such
as neural networks, control systems, meteorological systems,
biological systems and so on in the natural world. Namely, it
is considered that investigation of stability in such time-delay
systems is significant [4]. Generation of chaos in time delayed
system is reported self excited oscillation system containing
time delay [5]. The oscillators have feedback systems which
control gains in this study. This chaotic circuit can be easily
realized by using simple electric circuit element and analyzed
exactly. The coupling switch connects alternately with one
subcircuit and other with a fixed time interval. On the other
hand, there are examples of nonlinear phenomena, chaotic
synchronization and so on [6]. In particular, many studies
on synchronization of coupled chaotic circuits have been
reported [7].

In this study, we devise the novel coupling method that
takes advantage of features of the chaotic circuit containing

time delay. The novel coupled method is utilizing the charac-
teristics of the circuit having time delayed feedback. Then,
we observe switching synchronization state. We carry out
computer calculations for three coupled auto gain controlled
oscillators containing time delay and investigate time delay of
subcircuits effects a change of synchronization state and the
time waveform.

II. TIME DELAYED CHAOTIC CIRCUIT

Figure 1 shows the time delayed chaotic circuit. This
circuit consists of one inductor L, one capacitor C, one linear
negative resistor −g and one linear positive resistor G of
which amplitude is controlled by the switch containing time
delay. The current flowing through the inductor L is i, and the
voltage between the capacitor C is v. The circuit equations
are normalized as Eqs. (1) and (2) by changing the variables
as below.
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Fig. 1. Time delayed chaotic circuit.
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Fig. 2. Switching operation.
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(A) In case of switch connected to −g,{
ẋ = y
ẏ = 2αy − x,

(1)

(B) In case of switch connected to G,{
ẋ = y
ẏ = −2βy − x.

(2)

By changing the parameters and variable as follow:

i =

√
C

L
Vthx, v = Vthy, t =

√
LCτ ,

g

√
C

L
= 2α and G

√
C

L
= 2β.

The switching operation is shown in Fig. 2, it controls the
amplitude of the oscillator. This switching operation is in-
cluded time delay. Td denotes the time delay. First, the switch
is connected to a negative resistor. In state of that, the voltage v
is amplified up to while v is oscillating, the amplitude exceeds
the threshold voltage Vth which is the threshold control loop.
Second, the system memorize the time as Tth while v is
exceeding the threshold voltage Vth and that state is remained
for Tth. In subsequent the instant of exceeding threshold
Vth, the switch stays the state for Td. After that switch is
connected to positive resistor during Tth. The switch does not
immediately connect in the positive resistor however the switch
is connected after Td. A set of switching operations control
the amplitude of v. By using mapping method to this circuit,
we could derive the 1-dimensional Poincare map explicitly
from each circuit, and the Poincare map was proved to have a
positive Liapunov number with computer assistances [3].

III. SYSTEM INCLUDING TIME DELAY IN ONE
DIRECTION

The circuit in this study has characteristic time delays
methods. We have devised coupled systems as shown in
Fig. 3. This system is coupled by resistors R0. It is called
coupled systems and “a ring of coupled chaotic circuits with
one-direction delay effects” By changing the parameters and

variables as follows:

in =

√
C

L
Vthxn, vn = Vthyn, t =

√
LCτ ,

g

√
C

L
= 2α, G

√
C

L
= 2β and γ = R0

√
C

L
.

Here is case of coupled system by resistors R0. The normalized
circuit equations of the system are given as follows:

(A) In case of that switch is connected to −g,{
ẋn = yn
ẏn = −xn + 2αyn + γ(yn−1 − 2yn + yn+1),

(3)

(B) In case of that switch is connected to G,{
ẋn = yn
ẏn = −xn − 2βyn + γ(yn−1 − 2yn + yn+1),

(4)

where (n = 1, 2, 3) and x0 = x3, x4 = x1. In calcula-
tion result, in-phase synchronization state can be observed.
When the coupling strength γ is larger than 0.1, full in-
phase synchronization can be observed. However full in-phase

synchronization can not be observed or synchronization is lost
in case of small coupling strength γ.
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Fig. 3. System including time delay in one direction.

IV. SIMULATION RESULTS

The proposed model has three time delay Td. In this study,
we consider that the coupled circuits have symmetric delay
and asymmetric delay.

A. With symmetric delay effects

The simulation results are shown in the Figs. 4, 5 and
6. These figures can be obtained by difference of time delay
Td1, Td2 and Td3. Figure 7 shows the magnified poincare
section of switching synchronization with symmetric delay
when Td1, Td2 and Td3 change. Figure 8 shows the bifurcation
and the cycle of switching synchronization with symmetric
delay. The amplitude of xn is switching sequentially in Figs. 4,
5 and 6 (c). These synchronization states are switching syn-
chronization state. The order of switching amplitude of the
loop is subcircuit1 - subcircuit3- subcircuit2. The amplitude
is going divergence and convergence. Additionally the time of

(a) Attractor

(b) Lissajous figure

(c) Time waveform

(d) Poincare section

Fig. 4. Simulation results with symmetric delay of α = 0.015,
β = 0.5, γ′ = 0.01 and Tdn = π.
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(a) Attractor

(b) Lissajous figure

(c) Time waveform
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Fig. 5. Simulation results with symmetric delay ofα = 0.015,
β = 0.5, γ′ = 0.01 and Tdn = 0.5π.

divergence and convergence is different. Especially, the cycle
of time waveforms is different in Figs. 4, 5 and 6 (c). Namely,
the number of cycle between the maximum of the amplitude
from next one is different. Figure 8 shows the bifurcation of
switching synchronization with symmetric delay. When the
attractor is high periodicity, the number of cycle is large.

B. With asymmetric delay effects

Next we change Td1 and fix Td2 = Td3 = 1.0π. Figures. 9
and 12 show simulation results. We investigate cycle of switch-
ing synchronization with asymmetric delay. Figure 10 shows
the magnified poincare section of switching synchronization
with asymmetric delay. Figure 11 shows the bifurcation and
the cycle of switching synchronization with asymmetric delay.
This bifurcation is periodic. Figure 13 shows cycle of switch-
ing synchronization with symmetric or asymmetric delay. The
variation of cycle with asymmetric delay is less than symmetric
delay. The number of cycle is large when periodic bifurcation
is observed. Namely, the cycle of switching synchronization
state is stabilization when periodic solution can be observed.

V. CONCLUSION

In this study, we devised coupled systems that takes ad-
vantage of features of the time delayed chaotic circuit. We
investigated synchronization state of a ring of coupled chaotic
circuits with one-direction delay effects. As a result, some
special synchronization states can be observed. We observed
in-phase switching synchronization state. When time delay of
subcircuits changes, the cycle of switching synchronization

(a) Attractor

(b) Lissajous figure

(c) Time waveform

(d) Poincare section

Fig. 6. Simulation results with symmetric delay of α = 0.015,
β = 0.5, γ′ = 0.01 and Tdn = 1.5π.

(i) Td=0.5π (ii) Td=0.7π (iii) Td=π (iv) Td=1.3π (v) Td=1.5π

Fig. 7. Magnified poincare section with asymmetric delay of
α = 0.015, β = 0.5 and γ′ = 0.01.

Fig. 8. Bifurcation and cycle with symmetric delay.

state changes. The switching of the amplitude can be observed
by difference of time delay. The variation of cycle with
symmtric delay is less than asymmtric delay. We consider the
cycle of switching synchronization state is stabilization when
periodic solution can be observed.
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