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Abstract—In this study, we investigate chaos propagation
in coupled chaotic circuits with multi-ring combination. We
compare the different coupling combination. These models are
coupled chaotic circuits when one circuit is set to generate
chaotic attractor and the other circuits are set to generate
three-periodic attractors. By using computer simulations, we
have observed that the chaotic attractor is propagated to the
other circuits. The three-periodic attractors are affected from
the chaotic attractors by changing the coupling combination
and increasing the coupling strength. Moreover, we confirm that
chaos propagation of the network without hub is faster than the
network with hub.

I. INTRODUCTION

Propagation in the network have attracted a great deal of
attention from various fields. It is important to investigate
chaos propagation under some difficult situations for the
circuits. For example of some difficult situations, network is
briefly given external stimulation and frustration is occurred in
the network. Furthermore, viral infection and the traffic jam
of the transportation network are mentioned as an example
of propagation in the network. Therefore we consider that it
is necessary to investigate that behavior of unlike the others
influence the whole system. In the biology, we can prevent
the unknown virus spreading if we comprehend the way of
viral infections. Additionally, it is applicable to the fields of
medical science and biology and so on. However, there are not
many studies of large-scale network of continuous-time real
physical systems such as electrical circuits. [1]-[5]

In the previous studies, chaos propagation have been inves-
tigated in ladder, ring or simple network system of coupled
chaotic circuits [6]-[8]. In this simple network, the three-
periodic attractors are affected from the chaotic attractors when
the coupling strength and the number of edge are increasing.
Moreover, we have observed that the process to chaos is
changed in each model.

In this study, we investigate chaos propagation in coupled
chaotic circuits with multi-ring combination. We propose
a multi-ring combination system using of chaotic circuits
coupled by the resistors. In this model, one circuit is set
to generate chaotic attractor and the other circuits are set
to generate three-periodic attractors. First, we observe how
to chaos propagation by increasing the coupling strength.
Moreover, by changing the method of connecting the edges,
we investigate chaos propagation in the entire system.

II. SYSTEM MODEL

The chaotic circuit is shown in Fig. 1. This circuit consists
of a negative resistor, two inductors, a capacitor and dual-
directional diodes.

We propose the triple-ring and quad-ring combination sys-
tem (see Fig. 2). Each model is used chaotic circuit coupled by
the resistors. In each model, central circuit is set to generate
chaotic attractor and the other circuits are set to generate
three-periodic attractors. One ring is consisted by five circuits.
Additionally, multi-ring in this study is consisted by three or
four rings.
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Fig. 1. Chaotic circuit.
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Fig. 2. Multi-ring combination.

The circuit equations of this circuit are described as follows:
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

L1
di

dt
= v + ri

L2
di

dt
= v − vd

C
dv

dt
= −i1 − i2.

(1)

The characteristic of nonlinear resistance is described as
follows:

vd =
rd
2

(∣∣∣∣i2 + V

rd

∣∣∣∣− ∣∣∣∣i2 − V

rd

∣∣∣∣) . (2)

By changing the variables and parameters,
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(3)

The normalized circuit equations are given as follows:



dxn

dτ
= αxn + zn

dyn
dτ

= zn − f(yn)

dzn
dτ

= −xn − βyn.

(4)

where α represents the chaos degree. f(yi) is described as
follows:

f(yn) =
1

2

(∣∣∣∣yn +
1

δ

∣∣∣∣− ∣∣∣∣yn − 1

δ

∣∣∣∣) . (5)

In the proposed multi-ring system, the circuits are connected to
only adjacent circuits by the resistors. The normalized circuit
equations of the system are given as follows:

dxn

dτ
= αxn + zn

dyn
dτ

= zn − f(yn)

dzn
dτ

= −xn − βyn −
∑
j∈Sn

γ(zi − z − j)

(n = 1, 2, · · ·, N).

(6)

In Eq. (6), N is the number of coupled chaotic circuits
and γ is the coupling strength. We define αc to generate
the chaotic attractor and αp is defined to generate the three-
periodic attractors. For the computer simulations, we calculate
Eq. (6) using the fourth-order Runge-Kutta method with the
step size h = 0.01. In this study, we set the parameters of the
system as αc = 0.460, αp = 0.412, β = 3.0 and δ = 470.0.

III. TRIPLE RING

A. System patterns

In this section, we explain the method of connecting the
edges from ring to ring in triple ring model. We define the
number of edge from central circuit to ring or from ring to
ring is fixed to only one. In this triple ring model, we use
16 circuits. Central circuit is set to generate chaotic attractor
and the other 15 circuits are set to generate three-periodic
attractors. Furthermore, we change the method of connecting
the edges. Figure 3 shows all system patterns in triple ring
model under this condition.
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Fig. 3. Triple-ring combination.

We divide the coupling combination into four patterns
(see Fig. 3). Each pattern is different of the connection edge
or the number of hubs. We define hub as the circuit which
connected by four edges. In our proposed system, there are
some hubs in each system. The hub-1 model has only one
hub such as 2nd circuit (see Fig. 3(c)). The the 2nd circuit is
connected from 1st, 3rd, 6th, 7th circuit. The hub-2 model
has two hubs such as the 2nd circuit and the 7th circuit
(see Fig. 3(d)). The 2nd circuit is connected from 1st, 3rd,
6th, 7th circuit and the 7th circuits connected from 2nd, 8th,
11th and 12th circuit.

Additionally, we divide the hub-0 model into two patterns
according to distance from central circuit to the farthest circuit.
For example, the shortest route is passed from 1st, 2nd, 3rd,
4th, 9th, 8th, 7th, 12th, 13th to 14th in the hub-0-A model
(see Fig. 4(a)). The hub-0-A model is passed 9 circuits. In
contrast, the shortest route is passed from 1st, 2nd, 3rd, 8th,
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7th, 12th, 13th to 14th in the hub-0-B model (see Fig. 4(b)).
The hub-0-B model is passed 7 circuits.
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Fig. 4. Route from central circuit.

B. Minimum coupling strength

In this section, we investigate the minimum coupling
strength when three-periodic attractors are changed to chaos
attractor. When we increasing the coupling strength, we com-
pare the each model. The simulation results are summarized
in Fig 5. We define the attractor as a chaos attractor, if
the attractor becames over three-periodic attractor. First, we
compare the model with hub and without hub. The coupling
strength of the model without hub is smaller than the model
with hub. Next, we compare the hub-0-A model and the hub-
0-B model. The distance form central circuit to the farthest
circuit is different in each model. The Coupling strength of
the hub-0-B model is smaller than the hub-0-B model.

Accordingly, we confirm that the model without hub is that
chaos attaractor propagates faster than the model with hub.
From these results, we consider that the hub weakens weight of
chaos from central circuit. Because the hub circuit connects to
many circuit than other circuit, we consider that the influence
of chaos is slacked off by hub circuit.
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Fig. 5. Minimum coupling strength (triple-ring).

C. Chaos propagation

Figures 6 and 7 show chaos propagation attractors in the
double ring combination system by increasing the coupling
strength γc. At this time, we fix the coupling strength as γ =
0.0000, all circuits is not propagated the chaotic attractor of 1st

chaotic circuit (see Fig. 6). The 1st circuit is chaotic attractor
and from 2nd to 16th circuits are three-periodic attractor.

Moreover, from the result of the minimum coupling
strength, we investigate the chaos propagation. When we fixed
the coupling strength as γ = 0.0060, all circuits are propagated
the chaotic attractor of 1st chaotic circuit in the hub-0-A and
the hub-0-B model (see Fig. 7(a), (b)). On the other hand, all
circuits are not propagated chaotic attractor in the hub-1 and
the hub-2 model (see Fig. 7 (c), (d)). In the model with hub,
when we fixed the coupling strength as γ = 0.0060, some
circuit are not propagated the chaotic attractor. For example,
the 10th and 11th circuits are not propagated in hub-1 model.
we consider that the the result is affected by initial value. If the
initial value change, the 10th and 11th circuits are propagated
and some other circuits are not propagated in hub-1 model.

IV. QUAD RING

A. System patterns
We investigate quad ring model with hub or without hub.

In quad ring model, we use 21 circuits. Central circuit is set
to generate chaotic attractor and the other 20 circuits are set
to generate three-periodic attractors. We define the number
of edge from central circuit to ring or from ring to ring is
fixed to only one. In quad-ring model, we define hub as the
circuit which connected by four edges. There are some hubs
in each system. We divide the coupling combination into 4
patterns(see Fig. 8). Each pattern is different of the connection
edge and the number of hub. For example, the hub-3 model
has 3 hubs such as the 2nd, 7th and 12th circuit.

B. Minimum coupling strength
In this section, we investigate the minimum coupling

strength when three-periodic attractors are changed to chaos
attractor. When we changing the coupling strength, we com-
pare the each model. The simulation results are summarized
in Fig 9. We define the attractor as a chaos attractor, if the
attractor becames over three-periodic attractor. The minimum
coupling strength of hub-0 model is smaller than the model
with hub. Additionally, as the number of the hub increase, so
minimum coupling strength is larger.

From the result, when we increasing the number of hub,
chaos propagation of the model with many hubs is more
difficult than the model without hub.

V. CONCLUSIONS

In this study, we have investigated chaos propagation in
coupled chaotic circuits as our proposed system. By the com-
puter simulations, we have observed that the chaotic attractor
is propagated to the other circuits. The three-periodic attractors
are affected from the chaotic attractors. Moreover, we confirm
that the model with hub weakens weight of chaos from central
circuit. From the result, chaos propagation has been changed
over time from three-periodic attractor to chaotic attractor or
from chaotic attractor to three-periodic attractor.

For the future works, we define the convergence time from
three-periodic attractors to chaos in order to investigate the
obtained phenomena of multi-ring system in detail.
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Fig. 6. Chaos propagation (γ = 0.0000).
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Fig. 7. Chaos propagation (γ = 0.0060).
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Fig. 8. Quad-ring combination.
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