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Abstract

We study synchronization phenomena on FitzHugh-Nagumo
(FHN) model. We investigate a three-neuronal system and
a four-neuronal system. We focus on the coexistence of the
periodic solutions on the each system by changing the ini-
tial value and the coupling strength. Some periodic solutions
depend on the initial value. In addition, we investigate fir-
ing patterns on the both systems. The only one firing pattern
which exist on the four-neuronal system is found.

1. Introduction

Many chemical and biological phenomena can be modeled
in reaction-diffusion systems. The reaction-diffusion systems
have various dynamical behavior. Excitability is the most im-
portant characteristic and the foundation on numerous physi-
cal biological systems.

Creature’s periodic motion is controlled by the neural cir-
cuit called Central Pattern Generator (CPG). Neural oscillator
is what has modeled excitation and inhibitory mechanism be-
tween the neurons in the neural circuit. FHN model is one
of neural oscillator models. Concretely, for example, we can
apply neural oscillators to robot motion control and nervous
disease. The network of neurons in the brain exhibits a sub-
tle balance of dynamic chaos and self-organized order[1]. A
number of neurological disease are characterized by a distur-
bance of this balance. For instance, it is synchronized firing
of electrical pluses of the neurons. Time-delayed feedback
control has recently been applied to suppress this undesired
synchrony.

Periodic neural firing is produced by CPG and has great
significance for the control of dynamic functions of the
body[2]. It is worth to investigate the mechanism of neural
networks which cause such a variety of periodic activities[3].
These complex firing patterns which include chaotic firings
are modeled through the effect of high dimensional dynamics
of an individual element, interaction of many neurons with
spatial degrees of freedom, and time delayed coupling[4].
There are many studies for excitable elements under exter-

nal periodic stimuli, which show various behavior including
phase-locking and chaotic behavior. It has been also studies
for an ensemble of oscillatory or excitatory elements interact-
ing each other in the context of synchronization and chaos[5].

Creatures have the neural circuit in their bodies. It is a
very complex structure. For the reason, we would like to
investigate more complex networks. However, we need to
investigate fundamental networks. In this study, we investi-
gate synchronization phenomena of a three-neuronal system
and a four-neuronal system on FHN model. We focus on two
points. The one is the difference of synchronization phenom-
ena by changing the initial value on the each system. The an-
other one is the difference of periodic solutions including fir-
ing patterns between the three-neuronal system and the four-
neuronal system. We observe the coexistence of the periodic
solutions. In addition to that, we find the only firing pattern
which exist on the four-neuronal system.

2. Fitzhugh-Nagumo model

In the following, we study the system which is modeled
by the excitable FHN models. The FHN model is a two-
dimensional simplification of the Hodgkin-Huxley model of
spike generation in squid giant axons. This model was sug-
gested by FitzHugh and the equivalent circuit was proposed
by Nagumo et al. FHN model is a very simple model for ex-
citable system. The model contains the only two variables,
however, does not describe a specific biochemical reaction. It
can be used to describe neural and cardiac dynamics.

FHN model is given by the following equations:

dui

dt
= ui(ui − α)(1− ui)− vi +

K

N

∑
i̸=j

(uj − ui) (1)

dvi
dt

= τ(ui − γvi) (2)

where uij is the activator, vij is the inhibitor, α, τ and γ are
parameters, K is the coupling strength and N is the number
of elements. α, τ and γ are fixed at α = 0.01, τ = 0.001 and
γ = 0.0 because these values are used in previous work of a
pair of excitable FHN elements. The time series are generated
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by the fourth-order Runge-Kutta method with step size h =
0.05.

3. A pair of excitable neurons

As a previous study, there is a study which focuses on a
minimal model that consists of repulsively coupled two ex-
citable neurons. This model produces and sustains various
firing patterns. There are many types of sequence of firing.
The diffusive coupling with a negative coefficient has been
considered as the effect of phase-repulsive coupling on two
dimensional coupled FHN arrays. The periodic firings are
found in two neurons with excitatory and inhibitory synaptic
couplings.

Five firing patterns have found on two neurons by chang-
ing the coupling strength K from −1 to 0. As an example, we
show time waveforms of two neurons in case of K = −0.012
in Fig. 1. We explain two-phase firing pattern in detail. After
N1 excites, N2 excites soon. After these successive excita-
tions, both neurons stay quiescent state for a while. On the
next successive excitations, N2 excites first. After that, N1

excites soon. These states are repeated. Accordingly, we can
symbolize this firing pattern as N1N2−N2N1−. In the same
way, we can symbolize four other firing patterns as N1N2−,
N1N2N1 −N2N1N2−, N1N2 −N1N2 −N2N1 −N2N1−
and N1N2 −N1N2 −N1N2 −N2N1 −N2N1 −N2N1−.

Here, we focus on the three-neuronal system and the four-
neuronal system. In this study, we consider analysis of these
systems by changing the initial value. We find that these sys-
tems show a various of firing patterns including chaotic firing.

4. Network Systems

We introduce the network systems used in this study. We
investigate two network systems. The three-neuronal system
is shown in Fig. 2. This system is a very simple system that
a neuron is just connected to a system of two neuron as a
ring topology. The each neuron connects with the other neu-
rons. We name this three-neuronal system triangle system.
The four-neuronal system is shown in Fig. 3. This system is
a system that a neuron is connected to a triangle system. We
put the neuron on the place that N2 and the neuron contrast
with a side between N1 and N3 on the triangle system as a
symmetry axis. This system has axial symmetry and include
two triangle. Therefore, we name this four-neuronal system
two-triangle system. The each neuron connects with the other
neurons, except that N2 does not connect with N4.

(a)

(b)

(c)
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Figure 1: Time evolution of two neurons on FHN model for the
coupling strength K = −0.012. The solid lines of (a) and (b) cor-
respond to time waveforms of N1 and N2, respectively. The solid
lines of (c) correspond to both neuronal time waveforms.

N1

N3N2

Figure 2: The triangle system.
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Figure 3: The two-triangle system.
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5. Numerical Experiments

5.1 Coexistence of Periodic Solutions

We investigate synchronization phenomena on triangle
system and two-triangle system by changing the coupling
strength K from −1 to 0. We also focus on the coexistence of
the periodic solutions by changing the initial value and var-
ious firing patterns. In this section, we consider the coexis-
tence of the periodic solutions. We decide the conditions of
the initial value. We define some rules. We use the same abso-
lute value on all neurons and investigate the systems by means
of five types of the absolute values. The absolute values are
0.25, 0.5, 1, 2 and 4. The negative sign is set to odd-numbered
neurons. Likewise, the positive sign is set to even-numbered
neurons.

In the beginning, we consider the triangle system. Fig-
ure 4 shows the number of solutions by changing the coupling
strength K from −1 to 0 on the triangle system. In this figure,
“1” of solutions mean that the system has the same solution at
all five types of the initial value. “0” of solutions correspond
to chaotic firing patterns. These patterns are observed in the
−0.7 to −0.61 range. “2” of solutions are observed, which
show the coexistence of the periodic solutions.

Secondly, we investigate the two-triangle system. Fig-
ure 5 shows the number of solutions by changing the cou-
pling strength K from −1 to 0 on the two-triangle system.
“0” of solutions correspond to chaotic firing patterns like-
wise. These patterns are observed in the −0.98 to −0.65
range. By connecting a neuron to the triangle system, the
range of chaotic firing patterns on the triangle system is larger
than that on the two-triangle system. On the two-triangle sys-
tem, “2” of solutions are also observed, which show the coex-
istence of the periodic solutions. There are more cases which
have the coexistence of the periodic solutions than on the tri-
angle system.

5.2 Comparison of Firing Patterns

In this section, we focus on firing patterns. First of all, we
investigate the periodic solutions on triangle system and two-
triangle system by changing the coupling strength K from
−1 to 0. In almost every cases, the periodic solutions do not
depend on the initial value on the both systems. That is why
we consider the only case that the absolute value of the initial
value is 0.25 as an example. Figures 6 (a) and 6 (b) show the
periodic solutions by changing the coupling strength K from
−1 to 0 by one hundredth on the triangle system and on the
two-triangle system, respectively. There are the existence of
three periodic solutions in Fig. 6 (b) compared with Fig. 6 (a).
That is clear at a glance. The triangle system is different from
the two-triangle system in that it has the existence of three
periodic solutions.
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Figure 4: The number of solutions by changing the coupling
strength K from −1 to 0 on the triangle system.

If we look at types of firing patterns, there are four
types of firing patterns on the triangle system. We can
symbolize the four firing patterns on the triangle system
as N1(N3)N2−, N2N1(N3)−, N2N1(N3) − N2N1(N3)−
and N1(N3)N2 − N2N1(N3)−. Here, N1(N3) means that
N1 is perfectly synchronized with N3. On the other hand,
there are six types of firing patterns on the two-triangle sys-
tem. We can symbolize the six firing patterns on the two-
triangle system as N1(N3)N2(N4)−, N2(N4)N1(N3)−,
N1(N3)N2(N4) − N1(N3)N2(N4)−, N2(N4)N1(N3) −
N2(N4)N1(N3)−, N1(N3)N2(N4) − N2(N4)N1(N3)−
and N1(N3)N2(N4)N1(N3) − N2(N4)N1(N3)N2(N4)−.
N1(N3)N2(N4) − N1(N3)N2(N4)− is the same with
N2(N4)N1(N3) − N2(N4)N1(N3)− as a type. However,
N1(N3)N2(N4)N1(N3) − N2(N4)N1(N3)N2(N4)− is ob-
served for the first time by connecting a neuron to the triangle
system. For example, this firing pattern is observed in case of
K = −0.990. The observed time waveforms are shown in
Fig. 7. Time waveforms N1 and N3 are synchronized at in-
phase with N2 and N4. On the first successive excitations,
the order of firing is N1N2N1−. On the next successive ex-
citations, the order of firing is N2N1N2−. These states are
repeated. A whole new firing pattern which is not found on
the triangle system is observed by connecting a neuron to the
triangle system. Three successive firings on one successive
excitations were not observed until on the two-triangle sys-
tem.

6. Conclusions

We investigated synchronization phenomena of the triangle
system and the two-triangle system on FHN model by chang-
ing the initial value and the coupling strength. Some solutions
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Figure 5: The number of solutions by changing the coupling
strength K from −1 to 0 on the two-triangle system.

(a) The triangle system.

(b) The two-triangle system.

Figure 6: Periodic solutions by changing the coupling strength K

from −1 to 0.

depended on the initial value, and others did not. There were
more cases which have the coexistence of the periodic solu-
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Figure 7: Time evolution of the two-triangle system on FHN model
for the coupling strength K = −0.990. The solid lines of (a) and
(b) correspond to time waveforms of N1(N3) and N2(N4), respec-
tively. The solid lines of (c) correspond to all neuronal time wave-
forms.

tions as with chaotic firing pattern on the two-triangle system
than those on the triangle system. As well as on a pair of
excitable neurons, some firing patterns were observed on the
triangle system and the two-triangle system. A whole new
firing pattern was observed by connecting a neuron to the tri-
angle system. The firing pattern has three periodic solutions.
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