
RISP

NCSP’16
International Workshop on
Nonlinear Circuits, Communications and Signal Processing

Honolulu, Hawaii, USA, March 6-9, 2016

Improving Back Propagation of Feed-Forward Neural Network
with Changing Sigmoid Functions

Shinsaburo Kittaka, Yoko Uwate, and Yoshifumi Nishio

Dept. of Electrical and Electronic Engineering, Tokushima University
2-1 Minami-Josanjima, Tokushima 770–8506, Japan

Email: {kittaka, uwate, nishio}@ee.tokushima-u.ac.jp

Abstract

Our study is about feed-forward neural network’s learning
method. Generally, the method of improving its learning is
focused on learning rate and moment term. We focus on sig-
moid functions. Sigmoid functions are used for converting in-
put signal into output signal and adjusting connection weight
of learning in feed-forward neural network. We change gradi-
ent of sigmoid functions and investigate our method’s effect.

1. Introduction

Neural network is constituted by some element that is
called neuron. This network is based on animal brain. With
similarity brain, it is appropriate in recognize written charac-
ters and recognize voice. Neural network’s features are paral-
lel processing and learning. We focus on learning. Neuron in
neural network transforms input signal to output signal with
sigmoid functions and adjusts connection weight from error
between actual value and estimated value.

We regard that learning system is appropriate in recognize
brain signal, because brain signal has difference with each
person and condition. In other research, the recognition brain
signal rate is 86 percent [1] [2]. We submit that we should
increase this rate. In this study, we focus on Feed-forward
neural network’s learning method. Feed-forward neural net-
work’s learning method is back propagation. We change sig-
moid functions and improve back propagation.

2. Feed-forward neural network

Feed-forward neural network is one of neural network. It
consists of input layer, hidden layer and output layer. Figure
1 shows feed-forward neural network’s composition.

Figure 1: Feed-forward neural networks composition .

Signal runs only one direction. Neuron converts input sig-
nal to output signal that is from 0 to 1 with sigmoid funcitons.

f(x) =
1

1 + exp(−x)
(1)

Figure 2: Sigmoid functions.

- 614 -

2.1. Back propagation

Back propagation is learning method of feed-forward neu-
ral network. Estimated value is inputed into output layer.
Output layer calculates the difference of actual value and es-
timated value.(2) The connection weight that is between neu-
ron and neuron adjusts based on this value.(3) fn(x) is actual
value and Yn is estimated value. W is the value of connec-
tion weight, η is learning rate and netj is input signal from
all connecting neurons.

δ = fn(x)− Yn (2)
∆W = ηδnf

′(netj) (3)

Repeating this calculate makes output signal perfect.

3. Proposed method

In this study, we change gradient of sigmoid functions. We
decrease the parameter “k” that is coefficient added into nat-
ural logarithm’s multiplier.

f(x) =
1

1 + exp(−kx)
(4)

Figure 3 shows sigmoid functions with changing “k” and
Fig. 4 shows differential form of sigmoid functions.

Figure 3: Sigmoid functions with “k”.

Figure 4: Differencial form of sigmoid functions.

First, we search learning late that has the smallest error.
Second, the parameter “k” is changed. Third, we decrease

“k” by 0.001 at iteration. Finally, we change the decreasing
value of “k”.

4. Simulation result

In this simulation, we investigate 2 simulations. One is Iris
plants and another one is sin function. We define parameters
as learning iteration = 1000 and the number of hidden layer’s
neurons = 4.

4.1. Iris plants
We divide Iris plants into 3 types. There are total of 150

data entries. The data records 4 attributes and 3 classifica-
tions. The 4 attributes are sepal length, sepal width, petal
length and petal width. The 3 types of iris flower are Iris Se-
tosa, Iris Versicolor and Iris Virginica. First, we search the
learning rate (a) that has the smallest error. Table I shows
the error with changing learning rate from 0.1 to 1.0.

Table 1: The error with changing a
a 0.1 0.2 0.3 0.4 0.5

ave 0.02896 0.02438 0.02974 0.02261 0.02144
a 0.6 0.7 0.8 0.9 1.0

ave 0.02144 0.02079 0.02137 0.02112 0.02144

We define as the learning rate = 0.7, because it has the
smallest error. We pursue simulation with this learning late.
Next, we search the “k” that has the smallest error. Table II
shows the error with changing the “k” from 0.6 to 1.5.

Table 2: The error with changing “k”
k 0.6 0.7 0.8 0.9 1.0

ave 0.02295 0.02231 0.02177 0.02221 0.02079
k 1.1 1.2 1.3 1.4 1.5

ave 0.02076 0.02237 0.02267 0.02364 0.02365

In this simulation, we obtain smaller error than the original
method. However, it is very small difference. We consider
that this simulation does not obtain good results. Next, we
decrease “k” by 0.001 at iteration and change the starting de-
creasing time. Table III shows the error with decreasing “k”.

In this simulation, we obtain very small error. This method
is effective to improve back propagation. In Table III, best
parameters are “k” = 0.9, the decreasing value = 0.001 and
the starting decreasing time = 500. Finally, we change the de-
creasing value of “k”. We set best parameters in Table III and
investigate the error with changing decreasing value of “k” at
iteration from 0.0006 to 0.0015. Table IV shows results.

- 615 -

Table 4: The error with changing decreasing value
value 0.0006 0.0007 0.0008 0.0009 0.001
ave 0.01748 0.01547 0.01490 0.01271 0.01078

value 0.0011 0.0012 0.0013 0.0014 0.0015
ave 0.01544 0.01711 0.01214 0.01693 0.01285

The smallest error is 0.01078 with the decreasing value of
“k” = 0.001. In this simulation, we obtain half of the original
method’s error.

4.2. Sin function

Next, we transform input signal from angle into sin func-
tion. There are total of 180 data entries. The data records
angle from 0 to 180 and sin function from 0 to 1. First, we
search the learning rate (a) that has the smallest error. In
this time, the learning late that has smallest error is big. So,
table V shows the error with changing learning rate from 2.1
to 3.0.

Table 5: The error with changing a
a 2.1 2.2 2.3 2.4 2.5

ave 0.01716 0.01667 0.01678 0.01592 0.01687
a 2.6 2.7 2.8 2.9 3.0

ave 0.01651 0.01632 0.01527 0.01503 0.01541

We define the learning rate = 2.9, because it has the small-
est error. We pursue simulation with this learning late. Next,
we search the “k” that has the smallest error. Table VI shows
the error with changing the“k” from 1.1 to 2.0.

Table 6: The error with changing “k”
k 1.1 1.2 1.3 1.4 1.5

ave 0.01604 0.01415 0.01493 0.01349 0.01511
k 1.6 1.7 1.8 1.9 2.0

ave 0.01383 0.01331 0.01422 0.01311 0.01335

We obtain smaller error than the original learning. 1.9 is
the best parameter of “k” in table VI. Next, we decrease “k”
by 0.001 at iteration and change the starting decreasing time.
Table VII shows the error with decreasing “k”.

This method has smaller error than the orginal method.
However, we can not obtain effective results like first sim-
ulation. In this simulation, best parameters are “k” = 2.0,
the decreasing value = 0.001 and the starting decreasing time
= 200. Finally, we change decreasing value of “k”. We set
best parameters in Table VII and investigate the error with
changing decreasing value of “k” at iteration from 0.0006 to
0.0015. Table VIII shows results.

Table 8: The error with changing decreasing value
value 0.0006 0.0007 0.0008 0.0009 0.001
ave 0.01035 0.00906 0.01177 0.01044 0.01118

value 0.0011 0.0012 0.0013 0.0014 0.0015
ave 0.01198 0.01273 0.01303 0.01672 0.01688

The smallest error is 0.0906 with the decreasing value =
0.007. We obtain smaller error than the original method.

5. Conclusion

Our learning method is changing gradient of sigmoid func-
tions by decreasing “k” at iteration for back propagation in
feed-forward neural network. In these simulations, we obtain
smaller error than the usual method. However, if the “k” is
small and starting decreasing time is early, our method makes
error very large. So, this method requires attention to set pa-
rameters.

In the future work, we resolution that why the error be-
comes small with our method.

References

[1] A. Hiraiwa, N Uchida, K Shimohara, N Sonehara
“EMG Recognition with a Neural Network Model for
Cyber Finger Control,” Transactions of the Society of
Instrument and control Engineers, vol. 30, no.2, pp.216-
224, 1994.

[2] S. Kitayama, M. Sasaki, S. Ito, “Limb motion estima-
tion by Bereitschaffs Potentian,” Journal of the Japan
Society of Applied Electromagnetics and Mechanics,
vol. 22, no. 2, pp. 318-323, 2014.

- 616 -

Table 3: The error with changing “k”

k
starting decreasing time 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0 0.33406 0.19977 0.18239 0.01315 0.01150 0.01282 0.01576 0.01674 0.01780 0.01747
100 0.22713 0.17337 0.21337 0.01244 0.01225 0.01301 0.01509 0.01622 0.01732 0.01743
200 0.13594 0.16410 0.17844 0.01165 0.01143 0.01303 0.01492 0.01591 0.01598 0.01707
300 0.10816 0.09496 0.08314 0.01304 0.01106 0.01465 0.01575 0.01514 0.01659 0.01690

iteration 400 0.02578 0.03072 0.05036 0.01180 0.01395 0.01356 0.01587 0.01697 0.01644 0.01697
500 0.01394 0.01325 0.01122 0.01071 0.01101 0.01301 0.01325 0.01556 0.01617 0.01584
600 0.10579 0.02672 0.01150 0.01072 0.01148 0.01219 0.01589 0.01560 0.01574 0.01639
700 0.02457 0.02290 0.03057 0.01090 0.01183 0.01378 0.01642 0.01610 0.01682 0.01624
800 0.01371 0.01937 0.02613 0.01386 0.01336 0.01409 0.01471 0.01558 0.01644 0.01664
900 0.01378 0.01228 0.01194 0.01336 0.01250 0.01498 0.01735 0.01528 0.01610 0.01648

Table 7: The error with changing “k”

k
starting decreasing time 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.02962 0.02434 0.02279 0.01834 0.01829 0.01684 0.01526 0.01552 0.01547 0.01291
100 0.02528 0.02261 0.02145 0.02059 0.01926 0.01744 0.01485 0.01508 0.01467 0.01205
200 0.02424 0.02661 0.02240 0.01832 0.01699 0.01657 0.01470 0.01329 0.01146 0.01097
300 0.03176 0.02379 0.02006 0.01779 0.01650 0.01441 0.01495 0.01199 0.01204 0.01307

iteration 400 0.02925 0.02362 0.02213 0.02002 0.02130 0.01562 0.01487 0.01322 0.01237 0.01241
500 0.03032 0.02692 0.02504 0.02203 0.01798 0.01749 0.01547 0.01422 0.01321 0.01307
600 0.03175 0.03012 0.02393 0.02003 0.01791 0.01752 0.01601 0.01521 0.01520 0.01392
700 0.03351 0.02595 0.02590 0.02278 0.01905 0.01876 0.01899 0.01753 0.01568 0.01540
800 0.03773 0.03035 0.02523 0.02360 0.01987 0.02429 0.02236 0.01889 0.01892 0.01642
900 0.06038 0.04008 0.03369 0.02365 0.02586 0.02658 0.02741 0.02393 0.02168 0.01897

- 617 -

