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Abstract

Generally, complex dynamical phenomena can be observed in
networks formed by many elements with nonlinearity. Cou-
pled Map Lattice has proposed by Kaneko, to represent the
complex high-dimensional dynamics, for example biologi-
cal systems, networks in DNA, and neural networks. In this
study, we investigate the influence of the delay in two coupled
cubic maps with intermittency chaos. Moreover, the relation
between average length of laminar part and the combination
of delay is investigated.

1. Introduction

Generally, complex dynamical phenomena can be ob-
served in networks formed by many elements with nonlin-
earity. Coupled Map Lattice (CML) has proposed by Kaneko
[1]-[4], to represent the complex high-dimensional dynam-
ics, for example biological systems, networks in DNA, eco-
nomic activities and neural networks. Furthermore, we focus
on intermittency chaos and delay. The delay naturally oc-
curs from information transmission and processing speeds in
the realistic networks[5]. In Ref.[5], the study investigated
the synchronization states of the coupled logistic maps with
the delay. As a result, the synchronization state of coupled
chaotic maps are induced by the delay. Therefore, the stud-
ies considered the delay in coupled chaotic maps are investi-
gated actively. In addition, intermittency chaos has stability
and mobility and gains good result for information process-
ing. We consider that intermittency chaos is related to various
phenomena[6][7], e.g, information processing of the brain. In
order to make clear the mechanism of such phenomena in var-
ious fields, unveiling the roles of intermittency chaos is very
important.

In this study, we focus on the influence of the delay in two
coupled cubic maps with intermittency chaos. When we set
a control parameter of two cubic maps to generate intermit-
tency chaos near the six periodic window, various synchro-
nization states are confirmed in laminar part. Moreover, the
relation between average length of laminar part and combina-
tion of the delay is investigated. Thereby, we could consider

two maps with six periodic solution easily to become to the
synchronization states by delay.

2. Two coupled cubic maps

A cubic map is expressed as follows:

f(x) = ax3 + x(1 + a), (1)

where a represents a control parameter.
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Figure 1: The bifurcation diagram of cubic map.

Figure 1 shows the bifurcation diagram of cubic map. This
figure shows period-doubling bifurcations and periodic win-
dows (near a = -3.69, -3.83). We focus on the boundary of pe-
riodic windows in the bifurcation diagram of cubic map. At
the boundary of six periodic window intermittency chaos is
observed in Fig. 2. Laminar represents the periodic state and
burst represents the chaotic state. We define a = -3.69964153
representing the coexistence of laminar and burst in here. Fig-
ure 3 shows the time series of cubic map with intermittency
chaos (a = -3.69964153). This figure shows intermittency
chaos is switching between laminar and burst. Furthermore,
in the case of a = -3.69964153, intermittency chaos including
six periodic laminars are observed. In this study, we consider
two coupled cubic maps with the delay.
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The coupling system is expressed as follows:

{
x(1,i+1) = (1− g)f(x(1,i)) + gf(x(2,i−τ1))
x(2,i+1) = (1− g)f(x(2,i)) + gf(x(1,i−τ2)),

(2)

where g represents the coupling strength, τ1 and τ2 represents
the delay between the maps.
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Figure 2: The boundary of six periodic window.
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Figure 3: Time series of cubic map with intermittency chaos
(a = -3.69964153).

3. Simulation Results

3.1 Average length of laminar part

In this study, the initial conditions and the parameters of
two cubic maps are fixed with x(1,0) = 0.1, x(2,0) = -0.2, g =
0.0000001, 0.00001, respectively. The iteration time is fixed
with i = 200000. And range of the delay is τ1 and τ2 = 0,
1, · · ·, 12. Figures 4 and 5 show the time series of coupled
cubic maps with the delay. Laminar during the iteration time
is longer than the other, e.g, Figs. 4 (a), (c) and Figs. 5 (a),
(c). The other almost aren’t observed the laminar part, e.g,
Figs. 4 (b) and Figs. 5 (b). As a result, increasing the value of

the coupling strength, the difference of laminar and burst can
be clearly seen.

Next, we investigate the length of laminar part in coupled
cubic maps with the delay. In order to investigate quantitative
average length of laminar part, we define laminar part by |x−
±0.1895 or ± 0.4865 or ± 0.8873| < 0.0001. Figures 6 and
7 show the average length of laminar part during the iteration
time. From Fig. 6, if the case of non-delay (τ1 =0, τ2 = 0),
average length of laminar part is 1547. In the case of τ1 + τ2
= 6n (n = 1, 2, 3, 4), the average length of laminar parts are
longer. The other has become less than 200. Among the τ1 +
τ2 = 6n, than when the case of non-delay, combinations of τ1
+ τ2 = 6n that the synchronization state is longer than non-
delay is confirmed thirteen locations. From Fig. 7, if the case
of non-delay (τ1 =0, τ2 = 0), the average length of laminar
part is 10366, because the density of burst part is increased
when the coupling strength is high. In the case of τ1 + τ2 =
6n, the average length of laminar parts are longer than Fig. 6.
The other has become less than 30. Among the τ1 + τ2 = 6n,
than when the case of non-delay, combinations of τ1 + τ2 =
6n that the synchronization state is longer than non-delay is
confirmed six locations.

f(
x
)

i

(a) τ1=0, τ2=0.
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(b) τ1=0, τ2=3.
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(c) τ1=1, τ2=5.

Figure 4: Time series of coupled cubic maps
(g = 0.0000001).
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(b) τ1=0, τ2=3.
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(c) τ1=1, τ2=5.

Figure 5: Time series of coupled cubic maps (g = 0.00001).

Figure 6: Average length of laminar part (g = 0.0000001).

Figure 7: Average length of laminar part (g = 0.00001).

3.2 Synchronization Pattern

The synchronization states have six synchronization pat-
terns in Fig. 8. Laminar part represents one of the synchro-
nization states. There are all the patterns within each the time
series. It does not have variation in the synchronization state
until switch to burst part. We investigate whether variation of
the synchronization state by the combination of the delay is
observed or not. In this study, we focus on the synchroniza-
tion states of each of the length of laminar part is more than
3,000. All synchronization states of this laminar part in the
time series is the same synchronization pattern. If the case of
non-delay, we confirm only in-phase synchronous, e.g, Fig. 8
(a). However, Fig. 9 shows variation of the synchronization
states in the combination of τ1 + τ2 = 6n (n = 1, 2, 3, 4). In ad-
dition, we search the synchronization state that consists of in-
phase synchronous to anti-phase synchronous, it returns to the
in-phase synchronous regularity. We have not searched vari-
ation to the coupling strength in the synchronization states.

4. Conclusions

In this study, we have investigated the influence of the
delay in two coupled cubic maps with intermittency chaos.
First, we observed the time series of coupled cubic maps with
the delay. Next, we investigated the length of laminar part
in coupled cubic maps with the delay. The average length of
laminar part is longer than the other when the delay is set to
τ1 + τ2 = 6n (n = 1, 2, 3, 4). Thereby, we could consider two
maps with six periodic solution easily to become to the syn-
chronization states when τ1 + τ2 = 6n. In addition to that we
searched the synchronization state consists of in-phase syn-
chronous to anti-phase synchronous, it returns to the in-phase
synchronous regularity in the combination of τ1 + τ2 = 6n .
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(a) Pattern 1.
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(b) Pattern 2.
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(c) Pattern 3.
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(d) Pattern 4.
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(e) Pattern 5.
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(f) Pattern 6.

Figure 8: Synchronization Patterns.

Figure 9: Regularity of the pattern.
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