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Abstract

In this study, we investigate synchronization in complex net-
work with hubs and dispersion by using parametrically ex-
cited van der Pol oscillators. By means of computer simu-
lation, we confirm various synchronous states and clustering
phenomena and observe the effect of hubs in complex net-
work.

1. Introduction

Synchronization is one of the fundamental phenomena in
nature and it is observed over the various fields. Studies on
synchronization phenomena of coupled oscillators are exten-
sively carried out in various fields, physics [1], biology [2],
engineering and so on. The coupled van der Pol oscillator is
one of typical coupled oscillators, and synchronization gener-
ated in the system can model certain synchronization of nat-
ural rhythm phenomena. Parametric excitation circuit is one
of resonant circuits, and it is important to investigate various
nonlinear phenomena of the parametric excitation circuits for
future engineering applications. In simple oscillator includ-
ing parametric excitation, Ref. [3] reports that the almost pe-
riodic oscillation occurs if nonlinear inductor has saturation
characteristic. Additionally the occurrence of chaos is refer-
enced in Refs. [4] and [5].

In our research group, we have investigated synchroniza-
tion of parametrically excited van der Pol oscillators [6]. By
carrying out computer calculations for two or three subcir-
cuits cases, we have confirmed that various kinds of synchro-
nization phenomena of chaos are observed. In the case of
two subcircuits, the anti-phase synchronization is observed.
In the case of three subcircuits, self-switching phenomenon
of synchronization states is observed.

However, we have investigated the only simple network
models. It is important to investigate more complex network
for the broad-ranging future engineering applications. In our
previous study, we have challenged to investigate the syn-
chronization and clustering in more complex network mod-

ified from “Dolphin social network” [7] by using parametri-
cally excited van der Pol oscillators with dispersion [8]. We
have confirmed that the network with hubs can induce syn-
chronization. Though, we have only investigated the case of
densely-packed with hubs.

In this study, we focus on the location of the hubs, and in-
vestigate synchronization and clustering in the complex net-
work scattering hubs. This network constructed by reference
to the network modified from “Dolphin social network” [8].
In this network, the hubs are scattered about dual places. We
focus the effect of the hubs in network, and investigate mech-
anism of synchronization clustering phenomena in the com-
plex network scattering hubs.

2. System model

The circuit model of van der Pol oscillator under paramet-
ric excitation is shown in Fig. 1.
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Figure 1: van der Pol oscillator under parametrically excitation

The circuit includes a time-varying inductor L whose char-
acteristics are given as the following equation. The time-
varying inductor is shown as Fig. 2.

L = L0γ(τ). (1)

γ(τ) is expressed in a rectangular wave as shown in Fig. 2,
and its amplitude and angular frequency are termed α and ω,
respectively. By changing the value of α, the amplitude of
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Figure 2: Function relating to parametric excitation

parametric excitation can be changed. The v − i characteris-
tics of the nonlinear resistor are approximated by the follow-
ing equation.

id = −g1vk + g3vk. (2)

By changing the variables and the parameters,
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The normalized circuit equations are given by the following
equations.
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(4)

where n is the count of the nodes. Sn is the set of the nodes
which are directly connected to the node n.

Table 1: Feature quantities of proposed network
Average degree 3.194

Average clustering coefficient 0.145
Average path length 4.384

In our system, parametrically excited van der Pol oscilla-
tors are coupled by one resistor R. Figure 3 shows proposed
complex network and Fig. 4 shows degree distribution of this
network. In this figure, vertical axis denotes the number of
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Figure 3: Proposed network
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Figure 4: Degree distribution of proposed network

nodes, and horizontal axis denotes the value of degree. In
this network, the number of nodes which is parametrically
excited van der Pol oscillator is 62 and the number of edges
which is one resister is 99. Other feature quantities of pro-
posed network is expressed in Table 1. This network can be
divided two clusters as shown in Fig. 3. The 58th node is the
hub in cluster 1, and the 15th node is the hub in cluster 2. The
bond number of 58th node is 11, and the bond number of 15th
node is 13.

3. Simulation method

In this research, we investigate the synchronization by us-
ing computer simulation. We fix the the circuit parameters
as ε = 1.00 and ω = 1.00 for all circuits. Each circuit
is given different initial values for computer simulations. In
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(a) δ = 0.017 (b) δ = 0.015

(c) δ = 0.010 (d) δ = 0.010

Figure 5: Clustering phenomena.

this simulation, all of the nodes involve dispersion mn in α
(in Fig. 2) which is corresponding to the amplitude of the
function relating parametric excitation within the compass of
−0.01 ≤ mn ≤ 0.01.

In order to analyze synchronous state, we define the syn-
chronization by the following equation:

|xn − xk| < 0.10 (k ∈ Sn). (5)

We fix the count of calculation as 100,000.

4. The results of simulation

In this simulation, we investigate change of synchronous
state and observe clustering phenomena by changing cou-
pling strength with uniformity. Figure 5 shows clustering

phenomena in the proposed complex network. In this figure,
the green edges express synchronous state and the gray edges
express unsynchronous state. First of all, this network be-
comes full synchronous state when the value of δ is 0.022. In
this research, we decrease the coupling strength δ from 0.022
in order to observe synchronization and clustering.

Next, in the case of δ = 0.017, this network is divided two
cluster as shown in Fig. 5 (a). In addition, we investigate
clustering phenomena by decreasing the coupling strength
δ. When the case of Fig. 5. (b), the unsynchronous state
comes into existence centering around 58th node. When
coupling strength decrease to δ = 0.010, the synchronized
nodes in the cluster 1 decrease in a marked fashion. There
are more synchronized nodes in the cluster 2 compared to
cluster 1, and 58th node has more unsynchronized edges than
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15th node whichever coupling strength δ. In each case of
Fig. 5 (b), (c) and (d), we can observe the synchronous state
of cluster 1 crumples up faster than cluster 2. From the above,
we can confirm that the clustering phenomena of complex
network draw influence from location of the hubs.

5. Conclusions

In this study, we have investigated synchronization and
clustering phenomena in proposed complex network with
hubs and dispersion by using parametrically excited van der
Pol oscillators.

We could observed various synchronous state and cluster-
ing phenomena, and confirmed that the clustering phenomena
of complex network draw influence from location of the hubs.
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