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Abstract—In this study, a simple chaotic oscillator com-
posed of RC phase shift oscillators using operational am-
plifier and pulse generator is proposed and investigated. By
inputing pulse wave to operational amplifier of RC phase
shift oscillator, chaotic phenomena are observed easily. We
carry out computer calculation and circuit experiment in or-
der to check the validity of the proposed model. And, we
derive the one parameter bifurcation diagram.

1. Introduction

Recently, many researchers have taken an their interest
in chaos [1][2]. Because, chaotic phenomena can be ob-
served in various fields and chaotic systems are good mod-
els to explain and describe the higher dimensional nonlin-
ear phenomena. In the field of electrical and electronic
engineering, various applications based on deterministic
chaos have been proposed [3][4]. For realizing such ap-
plications, we need chaotic oscillators.

There are various chaotic oscillators [5][6]. These oscil-
lators are composed of RC circuits, pulse generators and
operational amplifiers. By not using inductor, it can be
easily integrated chaotic oscillators. When the parame-
ters are varied, chaotic attractor are observed in this sim-
ple oscillator. However, it is not difficult to analyze these
chaotic oscillators. These oscillators are pulse-driven non
autonomous and discontinuous systems. When the output
of pulse generators varies, operational amplifier’s output
varies. To analyze discontinuous system, it is necessary to
follow complex procedures [7].

In this study, we propose new RC chaotic oscillator. The
proposed model is composed of RC phase shift oscillators
using operational amplifier and pulse generators. By in-
puting pulse wave to operational amplifier of RC phase
shift oscillator, chaotic phenomena are observed easily. We
carry out computer calculation and circuit experiment in or-
der to check the validity of the proposed model. And, we
derive the one parameter bifurcation diagram.

2. Circuit Model

Figure 1 shows the circuit model in this study. The pro-
posed model is composed of RC phase shift oscillator with
an operational amplifier and a pulse generator. The pulse

wave is inputted to non-inverting input terminal of the oper-
ational amplifier. The differ amplifier produces the output
voltagevo which is their power supply voltage, according
to the input signals.
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Figure 1: Circuit model.

Figures 2 shows the approximatedvi − vo characteristic
of the deffer amplifier.
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Figure 2: Approximatedvi − vo characteristic of the deffer
amplifier.

vi corresponds toVS − v3. By using differ amplifiers, the
proposed model has a continuity unlike using comparators.
The differ amplifier’s output varies smooth even though the
output of pulse generators varies. The following equation
of the approximatedvi − vo characteristic of the deffer am-
plifier is described as follows:

vo =
1
2

{
|Ra

Rb
(VS − v3) + E| − |Ra

Rb
(VS − v3) − E|

}
.

(1)

Figure 3(a) shows the input voltage waveformVS(t). V
is the amplitude of the pulse voltage andT is the period of
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Figure 3: Input voltage waveforms.

the waveform. Figure 3(b) shows the normalized voltage
waveformVβ(τ). Vβ corresponds toVS, γ corresponds toT
andτ corresponds tot.

The proposed model consists of only simple RC phase
shift oscillators and a pulse generator. Namely, neither in-
ductors nor negative resistors are included. Therefore, it is
considered to be realized on the IC chip without complica-
tion.

The circuit equations are described as follows:

RC
dv1

dt
= −2v1 + v2 + vo

RC
dv2

dt
= v1 − 2v2 + v3

RC
dv3

dt
= v2 − v3. (2)

By using the following variables and the parameters,

v1 = Ex, v2 = Ey, v3 = Ez,
d
dt
= ˙

t = RCτ, α =
Ra

Rb
, VS = Eβ, T = RCγ, (3)

the normalized circuit equation is described as follows:

ẋ = −2x+ y+ f (z)

ẏ = x− 2y+ z

ż= y− z. (4)

where f (z) is a piecewise-linear function corresponding to
the vi − vo characteristic of the deffer amplifier and is de-
scribed as

f (z) =
1
2
{|α(β − z) + 1| − |α(β − z) − 1|} . (5)

3. Exact Solutions

Since the circuit equations (4) are piecewise-linear, exact
solutions in each linear region can be derived. At first, we

define three piecewise-linear regions as follows:

R1 : α(β − z) ≤ −1

R2 : −1 < α(β − z) < 1

R3 : α(β − z) ≥ 1. (6)

Namely,R1 corresponds to the region where the output of
differ amplifier is minimum values. On the other hand,R3

corresponds to the region where the output of differ ampli-
fier is maximum values. And,R3 corresponds to the region
where the output of differ amplifier is varied.

We calculate the eigenvalues in each region from Eq. (4).
The eigenvalues in each region are described as follows,

R1 and R3 : λa, λb, λc

R2 : λ2, σ2 ± jω2. (7)

The eigenvalues ofR1 andR3 can be derived from∣∣∣∣∣∣∣∣
λ + 2 −1 0
−1 λ + 2 −1
0 −1 λ + 1

∣∣∣∣∣∣∣∣ = 0. (8)

On the other hand, the eigenvalues ofR2 can be derived
from ∣∣∣∣∣∣∣∣

λ + 2 −1 α
−1 λ + 2 −1
0 −1 λ + 1

∣∣∣∣∣∣∣∣ = 0. (9)

Next, we define the equilibrium points in each regions as

E1 = [E11 E12 E13]
T

E2 = [E21 E22 E23]
T

E3 = [E31 E32 E33]
T, (10)

respectively. These values are calculated by putting right
side of Eq. (4) to be equal to zero.

Then, we can described the exact solutions as follows.
In R1 andR3:

xa(τ) − En = F(τ) · F−1(0) · (xa(0)− En),

where

xa(τ) = [xn(τ) yn(τ) zn(τ)]T,

F(τ) = [fa(τ) fb(τ) fc(τ)]
T,

fc(τ) = [λa λb λc],

fb(τ) =
dfc(τ)

dτ
+ fc(τ),

fa(τ) =
dfb(τ)

dτ
+ fb(τ). (11)

(n = 1,3)

In R2:

xb(τ) − E2 = G(τ) ·G−1(0) · (xb(0)− E2),
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where

xb(τ) = [x2(τ) y2(τ) z2(τ)]T,

G(τ) = [ga(τ) gb(τ) gc(τ)]
T,

gc(τ) = [eλ2τ eσ2τ cosω2τ eσ2τ sinω2τ]
T,

gb(τ) =
dgc(τ)

dτ
+ gc(τ),

ga(τ) =
dgb(τ)

dτ
+ gb(τ). (12)

4. Results

We show the chaotic attractors which are obtained by
computer calculation and circuit experiment as shown
Fig. 4.
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Figure 4: The chaotic attractors obtained from the proposed
model. (1) Computer calculation. (α = 50, β = 0.03,
andγ = 7.3) (2) Circuit Experiment. (R = 10[kΩ],Ra =

750[kΩ],Rb = 15[kΩ],C = 103[nF],VS = 0.3[V] and
f = 140[Hz])

We can observed almost same attractors. The attractors of
RC chaotic oscillator which consists in a pulse generator
are angular[5][6]. On the other hand, the attractors of the
proposed model are round.

In order to confirm the generation of chaos and to inves-
tigate bifurcation scenario, we derive the Poincare map.

Let us define the following subspace

(d)(c)(b)(a) (e) (f) (g) (h) (i)

Figure 5: One parameter bifurcation diagram whenα is
varied.

S= S1 ∩ S2, (13)

where

S1 : β > 0

S2 : τ = nγ (n = 1,2, 3, ...). (14)

The subspaceS1 shows that the output of pulse generator
is maximum, while the subspaceS2 shows that the output
of pulse generator varies. Namely,S corresponds to the
transitional condition from−β to β.

We choseα as the control parameter and other parame-
ters are fixed asβ = 0.03, γ = 7.3.

Figure 5 shows the one parameter bifurcation diagram
whenα is varied from 1 to 50. The vertical axis showsx1,
the horizontal axis showsα, parameter step is 0.001 and
plotted point is 1000[τ]. And, Figures 6 show the attractors
of computer calculation.

For 1< α < 14.29, the oscillation is not observed from
Fig. 6(a) and the values vary depending on the initial val-
ues. From these results, we can observe the periodic or-
bits, torus and chaotic phenomena. In particular, we focus
on the chaotic phenomena whenα is 23.83 and 50. In or-
der to compare two types chaotic phenomena, we show the
Poincare maps and the largest Lyapunpv exponents whenα
is 23.83 and 50. The largest Lyapunov exponents are given
by

µ =
1
n

lim
n → ∞

n∑
k=1

log2
x1(τ + γ)

x1(τ)
. (15)

Table 1: Comparative results.
α Lyapunov exponent Transitional condition

22.83 0.000594 Continuity
50 0.000818 Discontinuity
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Figure 6: Computer calculated results.
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Figure 7: The Poincare maps.

From Fig. 7, it is seen that two types chaotic attractors
are different. In case thatα is 50, piecewise-linear regions
is changed fromR1 to R3 or R3 to R1. Namely, discontinu-
ity is observed on the proposed model. Almost RC chaotic
oscillators containing pulse generator have discontinuity.
On the other hand, in case thatα is 23.83, discontinuity is
not observed. By using differ amplifier, piecewise-linear
regions is changed smoothly. Therefore, continuity is ob-
served on the proposed model.

5. Conclusion

In this study, we have investigated a RC chaotic oscil-
lator. The proposed model is composed of RC phase shift
oscillator with an operational amplifier and a pulse gener-
ator. By inputing pulse wave to operational amplifier of
RC phase shift oscillator, chaotic phenomena are observed
easily. We have carried out computer calculation and cir-
cuit experiment to investigate. From computer calculations
and circuit experiments, we have checked the validity of
the proposed model. And, we have observed the periodic

orbits, torus and chaotic phenomena. Moreover, we have
observed two types chaotic phenomena. The one is chaotic
phenomena with discontinuity. The other is chaotic phe-
nomena with continuity in spite of using pulse generator.

In our future works, we will derive the Lyapunov expo-
nents by using Jacobian in order to investigate the proposed
model in detail. And, we will investigate the correlations
of between chaotic phenomena and other parameters.
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