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Abstract—In this study, we investigate relationship be-
tween synchronous state and oscillation frequency in the
coupled chaotic circuit. We consider that oscillation fre-
quency moves closer to steady value when the chaotic cir-
cuits become synchronization. From the computer simula-
tion, we confirm synchronous state in the coupled chaotic
circuit is lowly dependent to oscillation frequency. Fur-
thermore, we pay attention to timing of synchronization of
among the coupled chaotic circuits.

1. Introduction

The synchronous phenomena are observed as not only
fields of natural science but also various fields. For ex-
ample, we can confirm the flashing of fireflies (a firefly
is able to match frequency of other fireflies), metronome,
heartbeat of the human, and so on. The synchronous phe-
nomena have been researched extensively in physics [1]
and biology [2]∼[3]. In addition, applying synchronous
phenomena to medical technology are developed. These
synchronous phenomena are known as one of the nonlin-
ear phenomenon. For the future engineering application,
we consider it is important to investigate synchronous phe-
nomena of coupled chaotic circuits.

Synchronous Discrimination of the chaotic circuit uses
the phase difference generally. Not only the phase dif-
ference but also period and oscillation frequency exist in
the coupled chaotic circuit. We pay attention to oscilla-
tion frequency in the coupled chaotic circuit. We can con-
sider that entire circuit synchronizes if and when oscilla-
tion frequency included in a certain individual match. In
this paper, we compare synchronous discrimination by us-
ing phase difference and oscillation frequency. We consider
that oscillation frequency converges on a steady value when
the coupled chaotic circuits synchronize.

As simulation result, relationship is uncommon between
synchronization of the chaotic circuit and oscillation fre-
quency, although oscillation frequency converges on a
steady value conclusively. Next, we pay attention to timing
of synchronization of among the coupled chaotic circuits.
Chaotic circuits which we use in this paper do not synchro-
nize at the same time when the coupling strength exceeds
a certain threshold value. Chaotic circuits synchronize ev-
ery partial circuit. From these, we focus on timing when

chaotic circuits synchronize every partial circuit. We in-
vestigate whether there is relationship in the timing of syn-
chronization as we determine synchronous state of circuit
by using oscillation frequency or phase difference.

2. Circuit Model

Figure 1 shows the model of the chaotic circuit.
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Figure 1:The model of the chaotic circuit.

This chaotic circuit is called Nishio-Inaba circuit
[4]∼[7]. This circuit consists of single linear negative resis-
tance, single nonlinear resistance consisting of two diodes,
two inductors and single capacitor. The linear negative re-
sistance is realized by using the negative impedance con-
verter made of an operational amplifier [4]. The circuit
dynamics is described by the following piecewise-linear
third-order ordinary differential equation,


L1

di1
dt = v + ri1,

L2
di2
dt = v − vd(i2),

C dv
dt = −i1 − i2.

(1)

We approximate theI − V characteristic of the nonlinear
resistance by the following function,

vd(i2) =
rd

2

(∣∣∣∣∣i2 + V
rd

∣∣∣∣∣ − ∣∣∣∣∣i2 − V
rd

∣∣∣∣∣) . (2)

The parameterrd is the slope of the nonlinear resistance.
Equation (1) is normalized by changing the variables ac-
cording to
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i1 =

√
C
L1

V x ; i2 =

√
L1C
L2

Vy ; v = Vz ; “ · ” = d
dτ
,

r

√
C
L1
= α ;

L1

L2
= β ; rd

√
L1C
L2

= γ ; t =
√

L1Cτ. (3)

Equation (1) is normalized as


ẋ = αx + z,

ẏ = z − f (y),

ż = −x − βy.
(4)

The nonlinear functionf (y) corresponds to theI − V char-
acteristics of the nonlinear resistors consisting of the diodes
is assumed to be described as follow,

f (y) =
γ

2

(∣∣∣∣∣y + 1
γ

∣∣∣∣∣ − ∣∣∣∣∣y − 1
γ

∣∣∣∣∣) . (5)

3. Simulation Method

3.1. Circuit Model

We consider a ladder network using chaotic circuits as
shown in Fig. 2. Ladder network is the simple network.
Namely, ladder network is easier to understand the flow of
electric signal. Each circuit is coupled via resistorR.

Figure 2:Ladder network.

Normalized equation of coupled chaotic circuits is de-
scribed as follow,



ẋn = αxn + zn.

ẏn = zn − f (yn).

żn = −xn − βyn + σ(z(n + 1)− zn),
(n = 1)

żn = −xn − βyn + σ(z(n − 1)− zn),
(n = the maximum value)

żn = −xn − βyn + σ(z(n + 1)+ z(n − 1)− 2zn),
(otherwise)

(6)
For this simulation, the parameters are set as follows,

βn = 3.0 andγn = 470.0. Own oscillation frequency and
phase difference of the chaotic circuits depend on the pa-
rameterα. Each circuit is assignedα to investigate transi-
tion of oscillation frequency when the chaotic circuits are
synchronized. Parameterα is fixed value 0.40≤ α ≤ 0.48.
In addition, the parameterα1 andαn located in both ends of

coupled chaotic circuit are fixedα1 = 0.40 andαn = 0.48
to make it easier to compare transition of oscillation fre-
quency as shown in Fig. 3. Five chaotic circuits is used in
this paper.

Figure 3: Setting condition of parameterαn ( n = 5,
α2=α3=α4=the variable ).

The coupling strengthσn is chosen as a control param-
eter. All σn are set same value. Equation of coupling
strength is shown as

σn =
1
R

√
Ln1

Cn
. (7)

There is inverse relationship between the coupling
strengthσ and resistorR.

3.2. Oscillation Frequency

Equation of resonance frequency is described as

f =
1

2π
√

Ln1Cn
. (8)

We can not obtain exact value of oscillation frequency
by using Eq. (8) because the proposed chaotic circuit in-
cludes a linear negative resistance and a nonlinear resis-
tance consisting of two diodes. New measuring procedure
is proposed to obtain exact value of oscillation frequency.

Equation of new measuring procedure of oscillation fre-
quency is described as,

F =
1
T
. (9)

The cycleT is obtained from the chaotic attractor. The
chaotic attractor of proposed model is shown in Fig. 4.

X

Z

Figure 4:The chaotic attractor.

Poincare section of attractor is set between the first and
the fourth quadrant. The number of dots to describe attrac-
tor is counted from Poincare section. First 10,000 laps of
attractor are ignored because attractor is in an unstable state
at first. Total dots from 10,001 laps to 30,000 laps are mea-
sured for obtaining average dots per one lap. In addition,
average dots are replaced the cycle of the chaotic attrac-
tor. We can obtain exact value of oscillation frequency by
assigning the cycleT to Eq. (9).
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3.3. Definition of Synchronous State

Synchronous condition is necessary to investigate rela-
tionship between synchronous state and transition of oscil-
lation frequency. In order to derive synchronous state nu-
merically, the phase differenceθ is used. Equation of the
phase difference is shown as

θ = arctan
z
x
. (10)

The phase difference is obtained from chaotic attractor
as with oscillation frequency. For example, we measure the
phase difference between circuits 1 and 2. The phase differ-
ence is obtained by assigning coordinate of dot drawn the
chaotic attractor of circuit 2 to Eq. (10) when the chaotic
attractor of circuit 1 runs through the poincare section. We
define that two circuits 1 and 2 synchronize when the phase
differenceθ of each circuit is below 30 degrees.

4. Simulation Results

We set parameterα1 = 0.40 andα5 = 0.48. Figures 5∼8
show transition of oscillation frequency when the coupling
strength is changed.

Figure 5: Transition of oscillation frequency when the value of
α are set equability(α2 = 0.41,α3 = 0.435,α4 = 0.46).
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Figure 6: Transition of oscillation frequency when the value of
α are set nearerα1(α2 = 0.41,α3 = 0.43,α4 = 0.44).
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Figure 7:Transition of oscillation frequency when the value of
α are set nearerα5(α2 = 0.45,α3 = 0.46,α4 = 0.47).
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Figure 8:Transition of oscillation frequency when the value of
α are set nearer medium value(α2 = 0.43,α3 = 0.44,α4 = 0.45).

There are four patterns to set parameterα2, α3 andα4.
We set these parameters : approximately at equal inter-
val while avoiding the values that affect periodic solution,
nearerα1, nearerα5 and nearer medium value.

From the Figs. 5∼8, n(a−b) is indicated circuit state be-
tween circuit number a and b. In addition, we surround the
coupling strength with circle when the phase difference is
below 30 degrees. It is clear that relationship is uncommon
between synchronous state and oscillation frequency in any
patterns ofα2 ∼ α4. Each circuit does not synchronize
when oscillation frequency converges on a steady value.
And, oscillation frequencies are obtained a stable value be-
fore entire circuit becomes synchronization.

Next, we pay attention to timing of synchronization of
among the coupled chaotic circuits. Timing of synchro-
nization forced on oscillation frequency and the phase dif-
ference when the values ofα2 ∼ α4 are set equability is
shown in Tables 1 and 2. Table 1 is visualized Fig. 9 to
be easily understandable timing of synchronization. There
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are four symbols○,◎,△,◇. These symbols show that
circuits have some condition. For example, when the cou-
pling strength is set 0.002, chaotic circuit of circuit number
n=1,2 becomes synchronization as shown in Table 1. With
respect to Tab. 2, when coupling strength is set 0.003, oscil-
lation frequency is obtained a stable value in circuit number
n=1,3 and n=2,3. It will be easy to understand this method
by compare Table 1 and 2 with Fig. 5. By the expectation,
we consider that it has similarities for two investigations.
As compared to two table, there is no similarity in each
timing.

Figure 9:Timing of synchronization based on phase difference.

Table 1: Timing of synchronization based on phase differ-
ence.

Circuit number : n
1 2 3 4 5

0.002 ○ ○
0.006 ○ ○,◎ ◎
0.007 ○ ○
0.021 ○ ○
0.024 ○ ○σ

0.033 ○ ○
0.045 ○ ○
0.050 ○ ○
0.051 ○ ○

Table 2: Timing of synchronization based on oscillation
frequency.

Circuit number : n
1 2 3 4 5

0.002 ○ ○
0.003 ○ ◎ ○,◎

σ

0.005 ○ ◎ △ ○,◎,△
0.021 ○ ◎ △ ◇ ○,◎,△,◇

5. Conclusions

In this study, we have investigated relationship between
synchronous state and oscillation frequency in the coupled
chaotic circuit. From simulation results, we could obtain
a steady value of oscillation frequency before entire circuit
becomes synchronization. These results are not determined
by the value ofα. That is, synchronous state in the coupled
chaotic circuit is lowly dependent to oscillation frequency.
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