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Abstract—In this study, we investigate synchronization S ERN
and chaos propagation of 5 coupled chaotic circuits in var-
ious systems. We propose a ladder system model that the
central circuit generates chaotic attractor and the other cir- Li L
cuits generate three-periodic attractor. We observe th -
chaotic attractor of the central circuit propagates to all cir- —
cuits. By measuring the phasdidrence between the cir- -r )W
cuits, we investigate synchronization in the entire system.
Moreover, we compare the phaséeience between sym-
metric and asymmetric systems in the cases of adding the
coupling resistor from the ladder system.

Figure 1: Chaotic circuit.

1. Introduction

Synchronization of chaotic systems are good models to
describe various higher-dimensional nonlinear phenomena
in the field of natural science. Therefore, synchronization
of coupled chaatic circuits has been interested by many re-
searchers [1]-[4]. In particular, it is important to investigate
synchronization phenomena of coupled circuits under some
difficult situations for the circuits. In our research group,
synchronization and chaos propagation have been reported Figure 2: Proposed ladder system model.
in the ring of coupled chaotic circuits [5][6]. However,
these research were considered about the only one ring sys-
tem. S . s

. o . hich i rr nding th in thi tem. The num-

In this study, synchronization and chaos propagation (ﬁ! ch IS correspor ding the edgv_a s syste € nur

ST T . r of the circuits in the system is set to 5. The central cir-
coupled chaotic circuits in various systems are researcheq. . S
" clit (C3) generates chaotic attractor and the other circuits
We propose a ladder system model of 5 chaotic circuits -
: . . generate three-periodic attractors.
coupled by the resistors. In this model, the central cird oo . P .

) . o The circuit equations of this circuit are described as fol-

cuit generates chaotic attractor and the other circuits gep-

P : Three-periodic atiractors (ap)

: Chaotic attractor (o)

erate the three-periodic attractors. First, we show synchroo-WS' di; _

nization and chaos propagation in the ladder system. By Lla =V+ri

measuring the phaseftérence among all adjacent circuits, .

we investigate synchronization in the entire system. More- Lz% = V- Vg 1)
over, the symmetric and asymmetric systems obtained from dt

adding the coupling resistor from the ladder system, are dv S

studied. Ca ="l

wherevy is the characteristic of the nonlinear resistor con-
sisting of the diodes, is described as follows:

Figure 1 shows the chaotic circuit. This circuit consists
of a negative resistor, two inductors, a capacitor and dual- Vg = r_d(
directional diodes. We propose the ladder system model 2
as shown in Fig. 2. Each circuit is coupled by a resi&or

2. System Model
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By using the variables and parameters: *1 Y2 Y3 e s
(a) 47 o, \/’} o\t b . . ("} \(’;}
. C . VL C \\f/. \b</: h \j./" \\Q”.
1= L_Vxn, I2 = Ll Vn, V=Vz, 1 Z2 L e e
1 2
C Ly VL.C
=r —, = —, 6 =T s 3
=\ PG G 3)
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g= rRVC t= yLiCor, pr

the normalized circuit equations are given as follows:

X=ax+z
y=2z-1(y) (4)
z=-x-py,

wherea represents the chaos degrégy) can be expressed
as follows:

Z4:

(c.1) (c.2) (cé) (c;l-)

Z5

=3+ 5]-b-3]) ©
Figure 3: Attractors and phasdi@irences in the ladder sys-
In the proposed ladder system, the circuits are connectégm, o = 0.460,ap, = 0.412,5 = 3.0 ands = 4700. (a)
to only adjacent circuits by the resistors. The normalized = 0, (b) g = 0.005, (b1) 3000, (b2) 4193 and (c)
circuit equations of the system are given as follows: g = 0.010, (cl) 188, (c2) 1812, (c3) 2268, (c4)

) 11.02.

Xn = aXn +Zn

h=2—f - .

Yn=2n (n) (6) three-periodic attractors ar@facted from chaotic attractor

. and all circuits close to the synchronous state. In order
&= =%~ Byn - Z 9(zn — Zm). to investigate the synchronous state, we measure the phase

mes difference between the adjacent circuits.

wheren represents the circuit number up to 5 in this study. Figure 4 shows the relation between the phaffeince
Sh is the set of circuits which are directly connectedp and the coupling strength. In Fig. 4, the phasiéedence
g represents the coupling strength corresponding the coshows the average among all adjacent circuits. If all circuits
pling resistoR. For the computer simulations, we calculateare not synchronized, the phaséetience shows 90 We

Eq. (6) using the fourth-order Runge-Kutta method witieonfirm that the phase ftiérence is smaller and close to 0
the step sizé = 0.01. by increasing the coupling strength. Namely, all circuits
reach the synchronous state by chaos propagation.

3. Simulation Result

ap

In this study, we fix the circuit parameters of the system — _
asac = 0.460,ap = 0.412,8 = 3.0 ands = 4700. First, B 0
we investigate synchronization and chaos propagation i §
the ladder system. Moreover, we consider synchronizatio ,E ns
of the symmetric and asymmetric systems in the cases ¢ 72
adding the edge from the ladder system. @
=T [1]

3.1. Ladder System "o 0w o oais 6@ o4is Gy Bal 006 OME 068

Figure 3 shows some examples of the computer simula coupling strength. g

tion results. Figure 3(a) shows the state when all circuits

are not connected. We can observe the state that the ch&igure 4: Relation between the phas&atience and the
are propagated to the only adjacent circuits from the cewoupling strength in the ladder system.

tral chaotic circuit in a range of the coupling strength

(see Fig. 3(b)). By increasing the coupling strengtlall
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Table 1: Phase fierences in all symmetric systems. | .

Edge Phase fierence{] 5 1
5-A 17.89 S 5 .
5-B 16.15 5 0 .
6-A 15.02 2 . -
6-B 9.57 9
6-C 15.04 £,
7-A 9.35 =
7-B 15.32 g
7-C 10.05 5 6 7 8 9
7-D 15.32 number of edges
8-A 9.39
8-B 15.64 Figure 6: Relation between the average phasiermdince
8-C 9.41 and the number of edges in the symmetric systems.
9-A 9.27
9-B 9.67
the edges. However, the phasé&elience in 6-B is smaller
than 7-B, 7-C, 7-D and 8-B in Table 1. For this reason,
0G0 66006 we consider that the phasefférence is fiected from the
A 58 coupling way of each circuit.
pP-p-E-P-F PP E-P P p—pE-P-P
6 65 B 3.3. Asymmetric System

PP eEE EAeEP F2eEPH BF e
T 7-B 7-C 7-D

In this section, the asymmetric systems are considered.
Figure 7 shows the illustration of the all conceivable asym-
Pr@ed PP PP ®PEPP metric systems. Table 2 shows the phagiedinces of all

B 58 B symmetric systems in the casegpf 0.01 and each system
pattern corresponds to Fig. 7. The phagedénce shows
the average among all adjacent circuits in Table 2. Figure
8 shows the relation between the average phasereince
of the asymmetric systems and the number of edges. From
Table 2 and Fig. 8, in the asymmetric systems, the average
phase dterence is not decreased by increasing the number
of the edges like the symmetric systems. We consider that
3.2. Symmetric System this result is &ected from the asymmetry of the system.

. . ) . Figure 9 shows the comparison of the phasffedi

From this section, we consider the symmetric and asymyce among the ladder system, the symmetric systems, the
metric systems in the cases of adding the edge from “?;\%ymmetric systems and the full-coupled system. From
ladder system. We focus on the number of the edge and thg; 9| the entire system easy to reach the synchronous state
symmetric and asymmetric systems. In the case of the Iargé/ increasing the number of the edges. Additionally, we

der system, the number of edge is 4. On the other hanghqjder that synchronization and chaos propagation can
when the number of edge is 10, the system shows full-

coupled system. We consider the system in the interme-
diate number of the edge between 4 and 10. PECOe PSCOE
In this section, the symmetric systems are considered. " =

g-A 5-B

Figure 5: Symmetric system patterns.

Figure 5 shows the illustration of the conceivable all sym-# ® ¢ ®® ®@®c®® E®c® @

metric systems. Table 1 shows the phasiedénces of all on o - )
symmetric systems in the casegpf 0.01 and eachsystem @@ ¢ ®® @@ c®® FRCE® FRCc @
pattern corresponds to Fig. 5. The phagéedénce shows A e - 7o

the average among all adjacent circuits in Table 1. Froné ® ¢ ®® @®c¢®® @ ®c ® @

Table 1, the phasefiierence is decreased by increasing the & &8 8

number of edges. Figure 6 shows the relation betweenthg s c 8@ @@ ¢ ® @

average phasefiierence of the symmetric systems and the on .

number of edges. The average phadéedénce close to

0° by adding the edges. Namely, the entire system easy to Figure 7: Asymmetric system patterns.

reach the synchronous state by increasing the number of
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Table 2: Phase fferences in all asymmetric systems.

Edge Phase fierence{] o
5-A 12.25 g
5-B' 16.28 &
6-A 17.39 =
6-8' 13.26 P
6-C’ 15.83 =
7-A 11.43 =
7-B’ 15.46
7-C’ 11.43
7-D’ 9.71
8-A 9.52
8-B' 10.02
8-C’ 11.65
9-A 9.51
9-B’ 11.62

16.18 symmetric system

14 /\\j:metric system
N —— ——————————————
10 9.46

8

6

4

2

0

4 5 6 7 8 9 10
(laddder system) (full-coupled)

number of edges

Figure 9: Comparison of the phasdfdrence among the
ladder system, the symmetric systems, the asymmetric sys-
tems and the full-coupled system.

propagation speed” in the proposed system. Considering
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number of edges

Figure 8: Relation between the average phasiemrince
and the number of the edges in the asymmetric systems. [3]

be achieved when the circuit generating chaotic attractor is
the hub in the system. [4]

4. Conclusion

In this study, we have researched about synchroniza-
tion and chaos propagation of 5 coupled chaotic circuits[5]
in the symmetric and asymmetric systems. First, we pro-
posed the ladder system model that the central circuit gen-
erates chaotic attractor and the other circuits generate three-
periodic attractor. We have observed that the three-periodic
attractors areféected from the chaos of the central circuit, g
and all circuits are synchronized by increasing the coupling
strength in the ladder system. Moreover, we compared the
phase diterence between the symmetric and asymmetric
systems in the cases of adding the coupling resistor from
the ladder system. As a result, the entire system is easy to
reach a state of synchronization when the central chaotic
circuit is connected to many circuits.

For the future works, we would like to investigate “chaos
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the other types of chaotic circuits and the other coupling
systems are also important subjects for us.
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