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Abstract—In this study, we investigate synchronization
and chaos propagation of 5 coupled chaotic circuits in var-
ious systems. We propose a ladder system model that the
central circuit generates chaotic attractor and the other cir-
cuits generate three-periodic attractor. We observe that
chaotic attractor of the central circuit propagates to all cir-
cuits. By measuring the phase difference between the cir-
cuits, we investigate synchronization in the entire system.
Moreover, we compare the phase difference between sym-
metric and asymmetric systems in the cases of adding the
coupling resistor from the ladder system.

1. Introduction

Synchronization of chaotic systems are good models to
describe various higher-dimensional nonlinear phenomena
in the field of natural science. Therefore, synchronization
of coupled chaotic circuits has been interested by many re-
searchers [1]-[4]. In particular, it is important to investigate
synchronization phenomena of coupled circuits under some
difficult situations for the circuits. In our research group,
synchronization and chaos propagation have been reported
in the ring of coupled chaotic circuits [5][6]. However,
these research were considered about the only one ring sys-
tem.

In this study, synchronization and chaos propagation of
coupled chaotic circuits in various systems are researched.
We propose a ladder system model of 5 chaotic circuits
coupled by the resistors. In this model, the central cir-
cuit generates chaotic attractor and the other circuits gen-
erate the three-periodic attractors. First, we show synchro-
nization and chaos propagation in the ladder system. By
measuring the phase difference among all adjacent circuits,
we investigate synchronization in the entire system. More-
over, the symmetric and asymmetric systems obtained from
adding the coupling resistor from the ladder system, are
studied.

2. System Model

Figure 1 shows the chaotic circuit. This circuit consists
of a negative resistor, two inductors, a capacitor and dual-
directional diodes. We propose the ladder system model
as shown in Fig. 2. Each circuit is coupled by a resistorR

Cn

Figure 1: Chaotic circuit.

Figure 2: Proposed ladder system model.

which is corresponding the edge in this system. The num-
ber of the circuits in the system is set to 5. The central cir-
cuit (C3) generates chaotic attractor and the other circuits
generate three-periodic attractors.

The circuit equations of this circuit are described as fol-
lows: 

L1
di1
dt
= v + ri

L2
di2
dt
= v − vd

C
dv
dt
= −i1 − i2,

(1)

wherevd is the characteristic of the nonlinear resistor con-
sisting of the diodes, is described as follows:

vd =
rd

2

(∣∣∣∣∣i2 + V
rd

∣∣∣∣∣ − ∣∣∣∣∣i2 − V
rd

∣∣∣∣∣) . (2)
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By using the variables and parameters:

i1 =

√
C
L1

V xn, i2 =

√
L1C
L2

Vyn, v = Vzn,

α = r

√
C
L1
, β =

L1

L2
, δ = rd

√
L1C
L2
,

g =
1
R

√
L1

C
, t =

√
L1C2τ, ” · ” = d

dτ
,

(3)

the normalized circuit equations are given as follows:
ẋ = αx + z

ẏ = z − f (y)

ż = −x − βy,

(4)

whereα represents the chaos degree.f (y) can be expressed
as follows:

f (y) =
δ

2

(∣∣∣∣∣y + 1
δ

∣∣∣∣∣ − ∣∣∣∣∣y − 1
δ

∣∣∣∣∣) . (5)

In the proposed ladder system, the circuits are connected
to only adjacent circuits by the resistors. The normalized
circuit equations of the system are given as follows:

ẋn = αxn + zn

ẏn = zn − f (yn)

żn = −xn − βyn −
∑
m∈sn

g(zn − zm),

(6)

wheren represents the circuit number up to 5 in this study.
S n is the set of circuits which are directly connected toCn.
g represents the coupling strength corresponding the cou-
pling resistorR. For the computer simulations, we calculate
Eq. (6) using the fourth-order Runge-Kutta method with
the step sizeh = 0.01.

3. Simulation Result

In this study, we fix the circuit parameters of the system
asαc = 0.460,αp = 0.412,β = 3.0 andδ = 470.0. First,
we investigate synchronization and chaos propagation in
the ladder system. Moreover, we consider synchronization
of the symmetric and asymmetric systems in the cases of
adding the edge from the ladder system.

3.1. Ladder System

Figure 3 shows some examples of the computer simula-
tion results. Figure 3(a) shows the state when all circuits
are not connected. We can observe the state that the chaos
are propagated to the only adjacent circuits from the cen-
tral chaotic circuit in a range of the coupling strengthg
(see Fig. 3(b)). By increasing the coupling strengthg, all

x１ x２ x３ x４ x５

z１ z２ z３ z５z４

x１ x２ x３ x４ x５

z１ z２ z３ z５z４

z２ z３ z５z４

z１ z２ z３ z４

(a) 

x１ x２ x３ x４ x５

z１ z２ z３ z５z４

z３ z４

z２ z３

(b1) (b2)

(b)

(c)

(c2) (c3) (c4)(c1)

Figure 3: Attractors and phase differences in the ladder sys-
tem,αc = 0.460,αp = 0.412,β = 3.0 andδ = 470.0. (a)
g = 0, (b) g = 0.005, (b1) 30.00◦, (b2) 41.93◦ and (c)
g = 0.010, (c1) 12.88◦, (c2) 18.12◦, (c3) 22.68◦, (c4)
11.02◦.

three-periodic attractors are affected from chaotic attractor
and all circuits close to the synchronous state. In order
to investigate the synchronous state, we measure the phase
difference between the adjacent circuits.

Figure 4 shows the relation between the phase difference
and the coupling strength. In Fig. 4, the phase difference
shows the average among all adjacent circuits. If all circuits
are not synchronized, the phase difference shows 90◦. We
confirm that the phase difference is smaller and close to 0◦

by increasing the coupling strength. Namely, all circuits
reach the synchronous state by chaos propagation.
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Figure 4: Relation between the phase difference and the
coupling strength in the ladder system.
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Table 1: Phase differences in all symmetric systems.
Edge Phase difference [◦ ]
5-A 17.89
5-B 16.15
6-A 15.02
6-B 9.57
6-C 15.04
7-A 9.35
7-B 15.32
7-C 10.05
7-D 15.32
8-A 9.39
8-B 15.64
8-C 9.41
9-A 9.27
9-B 9.67

Figure 5: Symmetric system patterns.

3.2. Symmetric System

From this section, we consider the symmetric and asym-
metric systems in the cases of adding the edge from the
ladder system. We focus on the number of the edge and the
symmetric and asymmetric systems. In the case of the lad-
der system, the number of edge is 4. On the other hand,
when the number of edge is 10, the system shows full-
coupled system. We consider the system in the interme-
diate number of the edge between 4 and 10.

In this section, the symmetric systems are considered.
Figure 5 shows the illustration of the conceivable all sym-
metric systems. Table 1 shows the phase differences of all
symmetric systems in the case ofg = 0.01 and each system
pattern corresponds to Fig. 5. The phase difference shows
the average among all adjacent circuits in Table 1. From
Table 1, the phase difference is decreased by increasing the
number of edges. Figure 6 shows the relation between the
average phase difference of the symmetric systems and the
number of edges. The average phase difference close to
0◦ by adding the edges. Namely, the entire system easy to
reach the synchronous state by increasing the number of

number of edges
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Figure 6: Relation between the average phase difference
and the number of edges in the symmetric systems.

the edges. However, the phase difference in 6-B is smaller
than 7-B, 7-C, 7-D and 8-B in Table 1. For this reason,
we consider that the phase difference is affected from the
coupling way of each circuit.

3.3. Asymmetric System

In this section, the asymmetric systems are considered.
Figure 7 shows the illustration of the all conceivable asym-
metric systems. Table 2 shows the phase differences of all
symmetric systems in the case ofg = 0.01 and each system
pattern corresponds to Fig. 7. The phase difference shows
the average among all adjacent circuits in Table 2. Figure
8 shows the relation between the average phase difference
of the asymmetric systems and the number of edges. From
Table 2 and Fig. 8, in the asymmetric systems, the average
phase difference is not decreased by increasing the number
of the edges like the symmetric systems. We consider that
this result is affected from the asymmetry of the system.

Figure 9 shows the comparison of the phase differ-
ence among the ladder system, the symmetric systems, the
asymmetric systems and the full-coupled system. From
Fig. 9, the entire system easy to reach the synchronous state
by increasing the number of the edges. Additionally, we
consider that synchronization and chaos propagation can

5-A' 5-B'

6-A' 6-B' 6-C'

7-A' 7-B' 7-C' 7-D'

8-A' 8-B' 8-C'

9-A' 9-B'

Figure 7: Asymmetric system patterns.
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Table 2: Phase differences in all asymmetric systems.
Edge Phase difference [◦ ]
5-A’ 12.25
5-B’ 16.28
6-A’ 17.39
6-B’ 13.26
6-C’ 15.83
7-A’ 11.43
7-B’ 15.46
7-C’ 11.43
7-D’ 9.71
8-A’ 9.52
8-B’ 10.02
8-C’ 11.65
9-A’ 9.51
9-B’ 11.62
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Figure 8: Relation between the average phase difference
and the number of the edges in the asymmetric systems.

be achieved when the circuit generating chaotic attractor is
the hub in the system.

4. Conclusion

In this study, we have researched about synchroniza-
tion and chaos propagation of 5 coupled chaotic circuits
in the symmetric and asymmetric systems. First, we pro-
posed the ladder system model that the central circuit gen-
erates chaotic attractor and the other circuits generate three-
periodic attractor. We have observed that the three-periodic
attractors are affected from the chaos of the central circuit,
and all circuits are synchronized by increasing the coupling
strength in the ladder system. Moreover, we compared the
phase difference between the symmetric and asymmetric
systems in the cases of adding the coupling resistor from
the ladder system. As a result, the entire system is easy to
reach a state of synchronization when the central chaotic
circuit is connected to many circuits.

For the future works, we would like to investigate “chaos
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Figure 9: Comparison of the phase difference among the
ladder system, the symmetric systems, the asymmetric sys-
tems and the full-coupled system.

propagation speed” in the proposed system. Considering
the other types of chaotic circuits and the other coupling
systems are also important subjects for us.

References

[1] N. F. Rullckov and M. M. Sushchik, “Robustness of
Synchronized Chaotic Oscillations,” Int. J. Bifurca-
tion and Chaos, vol. 7, no. 3, pp. 625-643, 1997.

[2] M. Wada, Y. Nishio and A. Ushida, “Analysis of Bi-
furcation Phenomena in Two Chaotic Circuits Cou-
pled by an Inductor,” IEICE Trans. Fundamentals,
vol. E80-A, no. 5, pp. 869-875, 1997.

[3] Y. Nishio and A. Ushida, “Chaotic Wandering and its
Analysis in Simple Coupled Chaotic Circuits,” IEICE
Trans. Fundamentals, vol. E85-A, no. 1, pp. 248-255,
2002.

[4] G. Abramson, V.M. Kenkre and A.R. Bishop, “Ana-
lytic Solutions for Nonlinear Waves in Coupled Re-
acting Systems,” Physica A: vol. 305, no. 3-4, pp.
427-436, 2002.

[5] Y. Uwate and Y. Nishio, “Collision between Chaotic
and Periodic Attractors in a Ring of Coupled
Chaotic Circuits” Proceedings of International Con-
ference on Nonlinear Dynamics of Electronic Sys-
tems (NDES’12), pp. 66-69, Jul. 2012.

[6] Y. Uwate and Y. Nishio, “Chaos Propagation in a
Ring of Coupled Circuits Generating Chaotic and
Three-Periodic Attractors” Proceedings of IEEE Asia
Pacific Conference on Circuits and Systems (APC-
CAS’12), pp. 643-646, Dec. 2012.

- 100 -


	Navigation Page
	Session at a glance

