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Abstract— In this study, we investigate synchronization states
observed in coupled chaotic circuits containing time delay. We
focus on relationships between synchronization state and chaotic
strength. Coexisting synchronization states depending on initial
values can be observed in the proposed system. Moreover, we
investigate the effect of chaotic behavior on the subcircuit to
synchronization states.

I. I NTRODUCTION

Generally, generation of chaos is reported self excited
oscillation system containing time delay. This chaotic circuit
can be easily realized by using simple electric circuit ele-
ment and analyzed exactly [1]. Furthermore, a number of
studies on synchronization of coupled chaotic circuits have
been made [2]. In this study, we investigate synchronization
state observed in some chaotic circuits containing time delay
coupled by inductor. Especially, we focus on the transition
of synchronization state by changing the chaotic strength
in this system. By carrying out computer simulations, two
types of synchronization state depending on initial values and
parameters can be observed. Moreover, we investigate the
relationship between parameters and synchronization state. In
addition we consider synchronization state of changes due to
the number of subcircuits.

II. C IRCUIT MODEL

Figure 1 shows the chaotic circuit containing time delay.
This circuit consists of one inductorL , one capacitorC , one
linear negative resistor−g and one linear positive resistorR
of which amplitude is controlled by the switch containing time
delay. The current flowing through the inductorL is i, and the
voltage between the capacitorC is v. The circuit equations are
normalized as Eqs. (1) (2) by changing the variables as below.
(A) In case of switch connected to−g,{

ẋ = y
ẏ = 2αy − x.

(1)

(B) In case of switch connected toG,{
ẋ = y
ẏ = −2βy − x.

(2)

By changing the parameters and variable as follow:

i =

√
C

L
Vthx, v = Vthy, t =

√
LCτ ,

g

√
C

L
= 2α andG

√
C

L
= 2β.

Figure 2 is chaotic attractor observed from the circuit. The
switching operation is shown in Fig. 3, it controls the ampli-
tude of the oscillator. This switching operation is included
time delay.Td denotes the time delay. First, the switch is
connected to a negative resistor. In state of that, the voltagev
is amplified up to whilev is oscillating, the amplitude exceeds
the threshold voltageVth which is the threshold control loop.
Second, the system memorize the time asTth while v is
exceeding the threshold voltageVth and that state is remained
for Tth. In subsequent the instant of exceeding threshold
Vth, the switch stays the state forTd. After that switch is
connected to positive resistor duringTth. The switch does
not immediately connect in the positive resistor however the
switch is connected afterTd. A set of switching operations
control the amplitude ofv. In the computer simulation,Td is
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Fig. 1. Chaotic circuit containing time
delay.

Fig. 2. Chaotic attractor obtained by
computer simulation.

the switch is connected to negative resistor
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Fig. 3. Switching operation.



fixed asπ/(1− α2). By increasing the parameter value ofβ,
the chaotic strength is qualitatively swelled since the solution
set of attractor is enlarged accordance with the increase the
parameter value.

III. T WO COUPLED CHAOTIC CIRCUITS

Figure 4 shows the coupled chaotic circuit. The normalized
circuit equations of the system are given as follows:

(A) In case of that switch is connected to−g,{
ẋn = yn
ẏn = 2αyn − xn − γ(xn+1 − xn).

(3)

(B) In case of that switch is connected to G,{
ẋn = yn
ẏn = −2βyn − xn − γ(xn+1 − xn).

(4)

where(n = 1, 2) andx3 = x1. By changing the parameters
and variable as follow:

in =

√
C

L
Vthxn, vn = Vthyn, t =

√
LCτ ,

g

√
C

L
= 2α, G

√
C

L
= 2β andγ =

L

L0
.

Figure 5 shows example of simulation results. Figures5
(1) and (2) are in-phase synchronization and anti-phase syn-
chronization states depending on the initial values. We in-
vestigate the basin of attraction regarding anti-phase and in-
phase synchronization. Figure6 shows the example of the
basin. Red and blue colors denote the basin related to anti-
phase and in-phase synchronization state respectively. By
increasing the value ofβ, the proportion of basin regarding
anti-phase synchronization state is increased. The relation
of the parameter value ofβ and the population of anti-
phase synchronization states show Fig.7. By increasingβ,
the proportion of basin regarding anti-phase synchronization
state is increased. Namely, it is considered that anti-phase
synchronization state is induced by chaotic behavior of each
subcircuits.

IV. A R ING OF THREECOUPLED CHAOTIC CIRCUIT

Figure 8 shows schematic of a ring ofN coupled chaotic
circuits containing time delay coupled by the inductor. The
normalized system equations are given as follows:

(A) In case of switch connected to−g,{
ẋn = yn
ẏn = 2αyn − xn − γ(2xn − xn+1 − xn−1).

(5)
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Fig. 4. Two coupled chaotic circuits containing time delay.

(B) In case of switch connected to G,{
ẋn = yn
ẏn = −2βyn − xn − γ(2xn − xn+1 − xn−1).

(6)

where(n = 1, 2, ..., N) , x0 = xN andxN+1 = x1.

(1) α = 0.015, β = 0.1, γ = 0.2.

(2) α = 0.015, β = 0.1, γ = 0.2.

Fig. 5. Simulation results of N = 2. (a) Attractor. (b) Lissajous figure.
(c) Timewaveform. Red:x1, Blue: x2.

(1) α = 0.015, β = 0.1, γ = 0.2 (2) α = 0.015, β = 0.5, γ = 0.2

(3) α = 0.015, β = 0.7, γ = 0.2 (4) α = 0.015, β = 0.8, γ = 0.2

Fig. 6. Basin of attraction. Red and blue colors denote anti-phase synchro-
nization state and in-phase synchronization state respectively.y1 = 0.1112,
y2 = −0.1113.

Fig. 7. Proportion of anti-phase synchronization state.



A. In case ofN = 3

Figure9 shows the simulation results in case ofN = 3. We
observed the two types of synchronization state same with
N = 2. In-phase synchronization and three-phase synchro-
nization states depending on initial values can be observed
as shown in Fig.9 (1) and (2). Also, by increasing the
parameter valueβ, in-phase synchronization state is gradually
changed and finally the system generates only three-phase
synchronization as shown in Fig9 (3). This behavior implies
the basin of attraction regarding to enlargement of three-phase
synchronization for increase of the parameter. In state of three-
phase synchronization, the phase difference is almost120◦

with respect to neighboring subcircuit.

B. In case ofN = 4

Figure 10 shows the simulation results in case ofN = 4.
Red, blue green and black colors denotex1, x2 x3 and x4

respectively. In this case, similar behavior with the case of
N = 2 can be observed. For instance, in-phase synchroniza-
tion and anti-phase synchronizations state can be observed in
case ofN = 4. It seems that anti-phase synchronization tend
to cause the stable state for the system inasmuch as the orbit
is exactly periodic. Moreover, from the results ofN = 2
and N = 4, the system generates in-phase and anti-phase
synchronization in case of that the number of coupled chaotic
circuit is even number in any number of coupled circuit.

C. In case ofN = 5

Similar synchronization state inN = 3 can be observed
in N = 5 as shown in Fig.11. Red, blue and green colors
denotex1, x2 andx3 respectively. Except forx1, x2, x3, time
waveforms are described with black color. In the parameter of
weak chaotic region, the system generates coexisting synchro-
nization state. And only five-phase synchronization is induced
in certain chaotic. The two types Lissajous figures depending
initial value can be observed the parameter value ofβ as shown
in Fig. 11 (3) and (4). In state of five-phase synchronization,
there is phase difference of72◦ with respect to neighboring
subcircuit. We compare the value ofβ when coupled circuits
are attracted toN -phase synchronization state.β in case of
N = 5 is smaller thanN = 3.

V. CONSIDERATION

Table I summarizes results from this study. The synchro-
nization state can be classified by the number of coupled
chaotic circuit whether the number is even or odd. When the
number of subcircuits is large, synchronization state is easily
attracted anti-phase synchronization orN -phase synchroniza-
tion.

VI. CONCLUSIONS

In this study, we have investigated synchronization state
observed in two coupled chaotic circuits containing time
delay. As a result, induction of anti-phase synchronization
or N -phase synchronization state caused by increasing the
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Fig. 8. A ring of coupled chaotic circuits containing time delay.

(1) α = 0.015, β = 0.1, γ = 0.2.

(2) α = 0.015, β = 0.1, γ = 0.2.

(3) α = 0.015, β = 0.8, γ = 0.2.

Fig. 9. Simulation results ofN = 3. (a) Attractor. (b) Lissajous figure.
(c) Timewaveform. Red, blue and green colors denotex1, x2 and x3

respectively.

chaotic strength of subcircuit has confirmed. Furthermore, we
have investigated synchronization state observed on a ring of
coupled chaotic circuits containing time delay. As a result,
induction of anti-phase orN -phase synchronization caused
by chaotic strength of subcircuit have clarified. Moreover,
synchronization state can be classified by the number of
coupled chaotic circuit whether the number is even or odd.
In future work, We will investigate the parameter region of
coexisting synchronization and the mechanism of induction of



TABLE I

SYNCHRONIZATION STATE.

Coupled circuits A ring of coupled circuits
N = 2 N = 3 N = 4 N = 5 N = n N = k

odd even
in-phase ... in-phase in-phase in-phase ... in-phase in-phase
θd ≃ 0[◦] θd ≃ 0[◦] θd ≃ 0[◦] θd ≃ 0[◦] θd ≃ 0 [rad] θd ≃ 0 [rad]
anti-phase 3-phase anti-phase 5-phase N-phase anti-phase

θd ≃ 180[◦] θd ≃ 120[◦] θd ≃ 180[◦] θd ≃ 72[◦] θd ≃ 2π
n

[rad] θd ≃ π [rad]

(1) α = 0.015, β = 0.1, γ = 0.2.

(2) α = 0.015, β = 0.1, γ = 0.2.

(3) α = 0.015, β = 0.8, γ = 0.2.

Fig. 10. Simulation results of N = 4. (a) Attractor. (b) Lissajous figure.
(c) Timewaveform. Red, blue green and black colors denotex1, x2 x3 and
x4 respectively.

(1) α = 0.015, β = 0.1, γ = 0.2.

(2) α = 0.015, β = 0.1, γ = 0.2.

(3) α = 0.015, β = 0.8, γ = 0.2. type1

(4) α = 0.015, β = 0.8, γ = 0.2. type2

Fig. 11. Simulation results of N = 5. (a) Attractor. (b) Lissajous figure.
(c) Timewaveform. Red, blue and green colors denotex1, x2 andx3 respec-
tively. Black color shows thexn(n > 3).

anti-phase orN -phase synchronization state.
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