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Abstract—In this study, we investigate the influence of
local bridge on a complex network of 25 coupled chaotic
circuits. From synchronization phenomena of coupled
chaotic circuits, we show that synchronization of local
bridge is easy to break down. By means of computer simu-
lations, the network switches to global synchronization and
partial synchronization. In order to analyze synchroniza-
tion, we define asynchronous probability during a certain
time interval. Moreover, we statistically analyze the so-
journ time of synchronization of each edge including local
bridge.

1. Introduction

Complex networks have attracted a great deal of at-
tention from various fields since the discovery of “small-
world” network [1] and “scale-free” network [2]. In partic-
ular, how network topological structure influences its dy-
namical behaviors, is currently becoming a topic of great
important. On the other hand, synchronization phenomena
on the networks of coupled chaotic systems are very inter-
ested. However, there are not many studies of large-scale
network of continuous-time real physical systems such as
electrical circuits. Additionally we focus on synchroniza-
tion phenomena of coupled chaotic circuit network with
community structure based on social theory.

In sociology, there is a famous theory called “The
strength of weak ties” by Granovetter [3]. This is the the-
ory that weak networks (weak ties) are important more than
strong networks (strong ties). Because strong networks are
easy to isolate by centripetal force for homogeneity and
affinity. Therefore weak ties are essential for information
propagation and so on. Weak ties connect strong networks
with each other as the bridge. In large-scale network, the
bridging function may be provided locally. This kind of the
bridge is called “local bridge”.

In this study, synchronization phenomena on 25 coupled
chaotic circuit network with local bridge are investigated.
We show that synchronization of local bridge is easy to
break down. By means of computer simulations, the net-
work switches to global synchronization and partial syn-
chronization. In order to analyze synchronization, we de-
fine asynchronous probability during a certain time inter-
val. Moreover, we statistically analyze the sojourn time of
synchronization of each edge including local bridge.

2. Network Model

Figure 1(a) shows the chaotic circuit which is three–
dimensional autonomous circuit proposed by Shinrikiet
al. [4][5]. This circuit is composed by an inductor, a
negative resistance, two condensers and dual–directional
diodes. This circuit generates asymmetric attractor as
shown in Fig. 1(b). A proposed network model of 25 cou-
pled chaotic circuits with local bridge is shown in Fig. 2. In
this study, chaotic circuits (CCn) are applied to each node
of the network and each edge corresponds to resistorsR. In
this model, local bridges are 1-25, 8-9, 14-15, 15-16, and
22-23.
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(a) Chaotic circuit. (b) Attractor
(α = 0.4, β = 20,γ = 0.5).

Figure 1:Chaotic circuit and attractor.
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Figure 2:Network model.

First, we approximate thei−v characteristics of the non-
linear resistors consisting of the diodes by the following
three-segment piecewise-linear function as follows:

idn =


Gd(v1n − v2n − V) (v1n − v2n > V)

0 (|v1n − v2n| ≤ V)

Gd(v1n − v2n + V) (v1n − v2n < −V).

(1)
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By using the parameters and the variables as follows:

in =

√
C2

L
Vxn, v1n = Vyn, v2n = Vzn

t =
√

LC2τ, “ · ” = d
dτ
, α =

C2

C1

β =

√
L

C2
Gd, γ =

√
L

C2
g, δ =

1
R

√
L

C2
,

(2)

the normalized circuit equations are given as follows:

ẋn = zn

ẏn = αγyn − α f (yn − zn) − αδ
∑
k∈Sn

(yn − yk)

żn = f (yn − zn) − xn,

(3)

wheren = 1,2,3, ..., 25 andSn is set of nodes which are
connected to CCn. The nonlinear functionf () corresponds
to thei −v characteristics of the nonlinear resistors consist-
ing of the diodes and are described as follows:

f (yn − zn) =


β(yn − zn − 1) (yn − zn > 1)

0 (|yn − zn| ≤ 1)

β(yn − zn + 1) (yn − zn < −1).

(4)

3. Synchronization States

In this study, we fix the same parameters asα = 0.4,
β = 20, γ = 0.5 andδ on all circuits. Each circuit is
given different initial values each other. We show the dy-
namics of synchronization of the coupled chaotic circuits.
In Fig. 3, the vertical axes are the differences between the
voltage (corresponding tov1) of the two chaotic circuits.
Namely, if the two chaotic circuits synchronize, the value
of the graph should be almost zero like 19-20. We can con-
firm that synchronizations of local bridges (8-9, 14-15, 15-
16, 22-23 and 1-25) are easy to break down compared with
others. In this study, we define two synchronization states
of “global synchronization” and “partial synchronization”.
Figure 3 shows that the network switches to two synchro-
nization states. Additionally, partial synchronization is al-
most occurred from local bridge.

4. Statistical Analysis

In this section, we fix a certain time interval as (τ
= 10,000 and step= 0.01τ) and we statistically analyze
the synchronization phenomena observed from 25 coupled
chaotic circuits with local bridge. First, we show the cou-
pling strength dependency of global synchronization. In
order to analyze synchronization state, we define the syn-
chronization as following equation,

|yn − yk| < 0.01 (k ∈ Sn). (5)

Figure 4 shows the coupling strength dependency of global
synchronization. We checked whether if the all edges are
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Figure 3:Phase difference waveform (δ = 1.0).

synchronized during a certain time interval. We confirm
that the network easy to become global synchronization
state by increasing the coupling strengthδ. In particular,
aroundδ = 1.6～1.7 are rapidly become to high global syn-
chronization probability.

Figure 4:The coupling strength dependency of global synchronization.

From this point forward, we choose the coupling
strength asδ = 1.0 and we analyze synchronization fo-
cusing edge more statistically. Figure 5 shows that sorted
all edges in order from highest to lowest of asynchronous
probability and the number of switching between synchro-
nization and asynchronous each edge. Local bridges are
the top five of asynchronous probability among all edges.
Additionally, local bridges are large number of switching
between synchronization and asynchronous compared with
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other edges. Figure 6 shows the distribution of the number
of synchronized edges during a certain time interval where
the 41 of synchronized edge shows global synchronization
and the 0 of edge shows fully asynchronous. In this pa-
rameters, we consider that various partial synchronizations
exist on the network. In Fig. 6, it is interested that the dis-
tribution of the 41 edges is the second highest.

Next, node 15 is located in between two local bridges
(14-15 and 15-16). Therefore the investigating of the states
of special node 15 in this network, is important. Figure
7 shows the distribution of the states of node 15 during a
certain time interval. In Fig. 7, for example, state D shows
that nodes 14 and 15 are synchronized however nodes 15
and 16 are not synchronized. In four states, state A is the
highest distribution. Therefore node 15 is easy to isolate
however state B is the second highest distribution that is
interested.

Figure 7:Distribution of the states of node 15.

Moreover, we focus on the sojourn time of synchroniza-
tion of each edge including local bridge. Figure 8 shows
the distribution of the sojourn time of synchronization. The
slots in the horizontal axes of the figure denote the ranges of
the sojourn time in Tab. 1. From Fig. 8(a), the graphs of lo-
cal bridges is very similar and the ratio of slot 1 is predomi-
nantly high. Namely, synchronizations of local bridges dis-
appear immediately. On the other hand, from Fig. 8(b),
graphs of various edges show that the sojourn time of the
synchronization is longer than local bridges. In particular,
the sojourn time of synchronization of edge 23-25 that is
located in between two local bridges (22-23 and 1-25), is
similar to the local bridges. From this result, edge 23-25 is
considered quasi-local bridge.

Table 1: Ranges of slots in Fig. 8.

Slot Sojourn time (τ) Slot Sojourn time (τ)

1 τ<1 4 3 ≤τ<4
2 1 ≤τ< 2 5 4 ≤τ<5
3 2 ≤τ< 3 6 τ ≥5

5. Conclusion

In this study, we have proposed the network of 25 cou-
pled chaotic circuits with local bridge. By means of com-
puter simulations, synchronization of local bridge is easy

1       3  4       6      2 5 1       3  4       6      2 5 1       3  4       6      2 5 1       3  4       6      2 5 1       3  4       6      2 5

1-25 8-9 14-15 15-16 22-23

(a) Local bridges.

1-4

1 3 4 6 2 5 1 3 4 6 2 5 1 3 4 6 2 5 1 3 4 6 2 5 1 3 4 6 2 5

5-7 10-12 19-22 23-25

(b) Various edges.

Figure 8:Distribution of the sojourn timeτ of synchronization.

to break down. Additionally, we confirmed that two syn-
chronization states of global synchronization and partial
synchronization. Moreover, we statistically analyzed that
the sojourn time of synchronizations of local bridges are
shorter than other edges. Namely, local bridge almost be-
haves asynchronously. These phenomena show that local
bridge is the weak ties for promoting information propaga-
tion. In order to understand the phenomena correctly, more
detailed investigation considering cluster should be carried
out in our future works.
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Figure 5:Asynchronous probability and the number of switching between synchronization and asynchronous (δ = 1.0).

Figure 6:Distribution of the number of synchronized edges during a certain time interval (δ = 1.0).
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