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Abstract—In this study, we investigate synchronization
phenomena of coupled chaotic circuits. The chaotic cir-
cuits are combined by resisters on one-dimensional coordi-
nate system. We change the distance between the circuits
to adapt the coupling strength. We investigate synchroniza-
tion phenomena when the distance between the circuits in
the group is changed. Also, we measure the phase differ-
ence using computer simulations. From the computer sim-
ulations, we could make sure of the breakdown of inter-
cluster synchronization when the system is changed from
the symmetric system to the asymmetric system.

1. Introduction

Synchronization phenomenon is one of the typical phe-
nomena observed in nature. Recently, many studies
have been investigated synchronization of chaotic circuits
[1]∼[5]. It is focused how the differences of the network
structure impact on the whole circuits. Additionally, it is
applicable to the fields of medical science and biology and
so on.

In our research group, we have investigated the clus-
tering phenomena resulting from the synchronization phe-
nomena observed in coupled chaotic circuits when the
chaotic circuits are arranged in two-dimensional coordinate
[6], [7]. We observed that the chaotic circuits arranged in
the near distance are synchronized at in-phase state, and
the coupled circuits with the far distance could not be syn-
chronized. From the results we confirmed the relationship
between clustering and synchronization phenomena.

The more detailed researches are needed for applying
to the investigation of more large scale network and gen-
eral network. So in this study, we investigate the syn-
chronization phenomena observed from symmetric cou-
pled chaotic circuits and asymmetric coupled chaotic cir-
cuits arranged in one-dimensional coordinate. We combine
chaotic circuits by resister, and the circuits are arranged
in one-dimensional coordinate system. The number of the
circuits is always ten and we investigate symmetric systems
and asymmetric systems. The distance between the central
circuits is fixed. We investigate synchronization phenom-

ena by changing the distance between the circuits.
In this study, we use ladder system. In the ladder sys-

tem, chaotic circuits are connected to only adjacent circuits.
Figure 1 shows the system model of the ladder system. We
measure the phase difference using computer simulations.

Figure 1:Ladder system.

2. Circuit Model

Figure 2 shows the circuit model. This is a chaotic circuit
called Nishi-Inaba circuit [8]∼[10].

Figure 2:Circuit model.

The circuit equations of this circuit are described as Eq.
(1).
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L1
di1
dt

= v + ri1

L2
di2
dt

= v − vd(i2)

C
dv
dt

= −i1 − i2

(1)

The characteristic of nonlinear resistance is described as
Eq. (2).
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The circuit equations are normalized as Eq. (3) by
changing the variables as below.

i1 =
√

C
L1

V x; i2 =
√

L1C
L2

Vy; v = Vz;

r
√

C
L1
= α; L1

L2
= β; rd

√
L1C
L2
= δ;

t =
√

L1Cτ; “ · ” = d
dτ ;
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ẋ = αx + z

ẏ = z − f (y)

ż = −x − βy
(3)

The value off (y) is described as Eq. (4).
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Figures 3 and 4 show the chaotic attractor generated
from the circuit by using computer simulation (Fig. 3) and
circuit experiment (Fig. 4). For the computer simulation,
we set the parameters asα = 0.460,β = 3.0 andδ = 470.
For the circuit experiment, the parameters are fixed with
L1 = 500[mH], L2 = 200[mH], C = 0.0153[µF], and
rd = 1.46[MΩ].

z

x
Figure 3:Chaotic attractor (computer simulation).

Figure 4:Chaotic attractor (circuit experiment).

In this study, we use the ladder system. In the ladder
system, chaotic circuits are connected to only adjacent cir-
cuits.

When chaotic circuits are connected to only adjacent cir-
cuits, the circuit equations are shown in Eqs. (5)∼ (7).
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ẋ1 = αx1 + z1
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Where the parameterγi j represents the coupling strength
between the circuits. The value ofγi j reflects the distance
between the circuits in an inverse way, described by the
following equation:

γ{i, j} =
g

(di j)2
. (8)

di j denotes the Euclidean distance between thei-th circuit
and thej-th circuit. The parameterg is coupling coefficient
that determines the coupling strengths. In this study, we set
the parameter asg = 1.0× 10−3.

3. Simulation Method

We use the ladder system arranged in one-dimensional
coordinate system. We use ten circuits in computer simula-
tions. We divide into the two symmetric groups, and there
are five circuits in one side of the group. In the left side and
the right side groups, the distances between the circuits are
0.3. The distance between the central circuits is 0.5. The
symmetric network structure is shown in Fig. 5(a).

We change the distance between the circuits by changing
the coupling strength. We define the distances between the
circuits in the left side group asd1. In the same way, the
distances between the circuits in the right side group asd2.
And we define the distance between the central circuits as
dcenter. In this simulation, we fix the values ofdcenter andd2,
and the value ofd1 is changed. The value ofd1 is decreased
gradually, and the value ofd1 is changed from 0.3 to 0.1.
The asymmetric network structure is shown in Fig. 5(b).
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Figure 6:Graphics of the phase difference (computer simulations of symmetric system).

=0.1

Group-R
d

1-2 2-3 4-53-4

8
5-6

(center)

Group-L
d1

2=0.3

dcenter=0.5

Ave. 8.263

Ave. 19.768

Phase difference
90.011

6-7 7-8 8-9 9-10

Figure 7:Graphics of the phase difference (computer simulations of asymmetric system).

(a) Symmetric network structure.

(b) Asymmetric network structure.

Figure 5:Network structures.

We measure the phase difference between the circuits
using the computer simulation. And we investigate the
change in the phase difference when the system is changed
from the symmetric system to the asymmetric system.

4. Simulation Result

Figure 6 shows the simulation result of symmetric sys-
tem. From this figure, we can see that the all circuits
are synchronized. Figure 7 shows the simulation result of

asymmetric system. From this figure, we can see that the
circuits in the groups are synchronized, however the central
circuits become asynchronous. And the phase differences
in the right side group are larger than the symmetric system.
Additionally, the phase differences in the left side group are
smaller than the symmetric system. Table 1 shows the av-
erages of the phase differences in each system.

Figure 8 shows the simulation result whend1 is changed.
This result shows the shift of the phase difference. We fo-
cus on the phase differences of the central circuits, between
the 4th and the 5th circuits, and between the 6th and the 7th
circuits. From the simulation result, the various results can
be obtained.

Table 1: Averages of the phase differences
Group-L dcenter Group-R

Symmetric system 16.354 21.083 15.531
Asymmetric system 8.263 90.011 19.768

In the case of the central circuits, the phase difference
is increasing gradually. And the central circuits become
asynchronous aroundd1 = 0.19. In the case of between the
4th and the 5th circuits, the phase difference is continued
to decrease because the distance between the circuits in the
left side group is continued to decrease. In the case of be-
tween the 6th and the 7th circuits, the phase difference is
increasing gradually, and the phase difference is decreased
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Figure 8:Simulation result.

from aroundd1 = 0.19.
In the right side group, the phase difference began to

decrease with the central circuits became asynchronous.
Asynchronous state of the central circuits strengthen the
coupling strength of each groups.

5. Conclusions

In this study, we have investigated the synchronization
phenomena in coupled chaotic circuits networks. We also
investigated the phase difference in the symmetric network
system and the asymmetric network system. From the com-
puter simulation, when using the symmetric network sys-
tem, all circuits are synchronized. And when using the
asymmetric network system, only central circuits become
asynchronous. From this results, we could make sure of the
breakdown of the inter-cluster synchronization.

For the future work, we would like to confirm the same
results by using the circuit experiments.
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