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Abstract—We have been observing synchronization phe-
nomena on coupled oscillators systems. We can observe
special phenomena on lattice oscillators by using computer
simulations. The special phenomena is the synchronization
states in in-and-anti-phase synchronizations for vertical di-
rection and in-phase synchronizations for horizontal direc-
tion. The synchronization states called two synchronization
modes. In this paper, we investigate and analyze the phase-
inversion waves on two synchronization modes on 2D oscil-
lator networks. We separate the observation phenomena for 5
regions, and propagation mechanisms of the phase-inversion
waves are analyzed.
1. Introduction

Synchronization phenomena can be observed in the bio-
logical bodies, the atomic world, the outer space, the me-
chanical systems, the electrical circuits, and so on. Espe-
cially, it is easy that synchronization phenomena are ob-
served on coupled oscillators systems which are electrical
circuits. Therefore, many phenomena have been reported
by using electrical circuits[1]. When van der Pol oscillators
are coupled by inductor as a ladder or as a 2D lattice, the
all oscillators are an in-phase synchronization or an in-and-
anti-phase synchronization. It is called the in-and-anti-phase
synchronization that the in-phase synchronizations and the
anti-phase synchronizations alternately exist. The in-and-
anti-phase synchronization can be stable when phase states
between edge oscillators and next oscillators are anti-phase
synchronizations. On 2D oscillator network, we can ob-
serve that vertical synchronization states differ from hori-
zontal synchronization states[2]. For example, if the vertical
synchronization states are the in-phase synchronizations, the
horizontal synchronization states are the in-and-anti-phase
synchronizations. The synchronization states are called two
synchronization modes.

In our previous study, we discovered a special wave mo-
tion that a phase state continuously propagates on a ladder
oscillator networks or on 2D oscillator networks. Especially,
we discovered a wave motion which switches phase states
between adjacent oscillators and continuously exists. The
wave motion is called phase-inversion waves[3].

In this study, we investigate and analyze the phase-
inversion waves on two synchronization modes on 2D oscil-
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Figure 1: Circuit model.

lator networks. We separate the observation phenomena for
5 regions. Furthermore, propagation mechanisms of the hor-
izontal and the vertical phase-inversion waves are analyzed.
2. Circuit model

The van der Pol oscillators are coupled by inductors L0 as
a 2D lattice (see Fig. 1) . The numbers of column and row
of this system are assumed as “N” respectively. We name
each oscillator OSC(k,l)(0 ≤ k and l ≤ N − 1). A voltage
of each oscillator is named v(k,l), and a current of a inductor
in each oscillator is named i(k,l) (see Fig. 1) . An equation of
the nonlinear negative resistor is shown as Eq. (1). Circuit
equations are normalized by Eq. (2). The normalized circuit
equations are shown as Eqs. (3)–(7). The α corresponds to a
coupling parameter. The ε corresponds to a nonlinearity of
each oscillator. This circuit is simulated by using the fourth
order Runge-Kutta method and Eqs. (3)–(7).

ir(v(k,l)) = −g1v(k,l) + g3v3
(k,l). (1)

i(k,l) =
√

Cg1
3Lg3

x(k,l), v(k,l) =
√

g1
3g3

y(k,l),

t =
√

LCτ, d
dτ = “ · ”, α = L

L0
, ε = g1

√
L
C .

(2)

[Corner–top] (left:(a, b)=(0, 1), right:(a, b)=(N − 1, N − 2).)
dx(0,a)

dτ = y(0,a), (3)

dy(0,a)

dτ = −x(0,a) + α(x(0,b) + x(1,a) − 2x(0,a))

+ ε(y(0,a) − 1
3 y3

(0,a)).

[Corner–bottom] (left:(a, b)=(0, 1), right:(a, b)=(N − 1,N − 2).)
dx(N,a)

dτ = y(N,a), (4)
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dy(N,a)

dτ = −x(N,a) + α(x(N−1,a) + x(N,b) − 2x(N,a))

+ ε(y(N,a) − 1
3 y3

(N,a)).

[Center] (0 < k < N − 1, 0 < l < N − 1.)
dx(k,l)

dτ = y(k,l), (5)

dy(k,l)

dτ = −x(k,l) + α(x(k+1,l) + x(k−1,l) + x(k,l+1) + x(k,l−1)

− 4x(k,l)) + ε(y(k,l) − 1
3 y3

(k,l)).

[Edge]
(top:(a, b)=(0, 1),bottom:(a, b)=(N−1,N−2),both:0 < l < N−1.)

dx(a,l)

dτ = y(a,l), (6)

dy(a,l)

dτ = −x(a,l) + α(x(a,l−1) + x(a,l+1) + x(b,l) − 3x(a,l))

+ ε(y(a,l) − 1
3 y3

(a,l)).

(left:(a, b)=(0, 1), right:(a, b)=(N−1,N−2), both:0 < k < N−1.)

dx(k,a)

dτ = y(k,a), (7)

dy(k,a)

dτ = −x(k,a) + α(x(k−1,a) + x(k+1,a) + x(k,b) − 3x(k,a))

+ ε(y(k,a) − 1
3 y3

(k,a)).

3. Phase-invertion waves
Phase-inversion waves in the in-and-anti-phase synchro-

nization for vertical direction and the in-phase synchroniza-
tion for horizontal direction are shown in Figs. 2 and 3. The
Figure 2 is observed when N is nine(an odd number). Signs
of initial values are shown in Fig. 4. “X” expresses an attrac-
tor of each oscillator(current vs. voltage). “Y” expresses an
itinerancy of phase difference by which sum of voltages of
adjacent oscillators is shown along the time(sum of voltages
vs. time). Black areas are almost the in-phase synchroniza-
tion. White areas are almost the anti-phase synchronization.
In each figure, we can observe phase-inversion waves which
simultaneously propagate to horizontal direction in the in-
phase synchronization and to vertical direction in the in-and-
anti-phase synchronization. The Figure 3 is observed when
N is ten(an even number). Signs of initial values are shown
in Fig. 5. In this study, basic synchronization states of verti-
cal direction are set as the in-and-anti-phase synchronization
and synchronization states of horizontal direction are set as
the in-phase synchronization.

3.1. Regions
We separate the observation phenomena for five regions.

The coupling parameter α is changed from 0.010 to 0.30, ev-
ery 0.010. The nonlinearity ε is changed from 0.010 to 0.50,
every 0.010. A wave which doesn’t disappear before 30000τ
is assumed as the phase-inversion wave in this paper. The
Figure 6 shows regions which the phase-inversion waves can
be observed when N equals 9. The Figure 7 shows regions
which the phase-inversion wave can be observed when N
equals 10. The vertical and horizontal phase-inversion waves

X Y

Figure 2: Computer simulation result of the phase-inversion
waves in the in-and-anti-phase synchronization for vertical
direction and the in-phase synchronization for horizontal di-
rection on 9×9 2D oscillator.

X Y

Figure 3: Computer simulation result of the phase-inversion
waves in the in-and-anti-phase synchronization for vertical
direction and the in-phase synchronization for horizontal di-
rection on 10×10 2D oscillator.

can be observed in region(i)(see Figs. 6 and 7). The verti-
cal phase-inversion waves can be observed and the horizon-
tal phase-inversion waves can’t be observed in region(ii)(see
Fig. 6). The vertical phase-inversion waves and the com-
plex phenomena for horizontal direction can be observed in
region(iii)(see Figs. 6 and 7). The vertical phase-inversion
waves and the synchronization phenomena without waves for
horizontal direction can be observed in region(iv)(see Fig. 7).
The complex phenomena for vertical direction and horizon-
tal direction can be observed in region(v)(see Figs. 6 and 7).

3.2. Mechanisms

We can observe a phenomenon that vertical phase-
inversion waves and horizontal phase-inversion waves prop-
agate at the same time. We analyze the propagation mech-
anism of phase-inversion waves by using an instantaneous
frequency of each oscillator and phase differences between
adjacent oscillators. The coupling parameter is fixed as
α=0.010, and nonlinearity is fixed as ε=0.150. The instanta-
neous frequency is defined as Eq. (8).

f(k,l)(a) =
1

τ(k,l)(a) − τ(k,l)(a − 1)
, (8)

where “a” expresses the number of times of the voltage pos-
itive peak value. τ(k,l)(a) means the time of OSC(k,l)(see
Fig. 8). Similarly, τ(k+1,l)(a) and τ(k,l+1)(a) are defined. Some
frequencies are observed in this phenomena. These frequen-
cies are needed to consider the synchronization states for
the vertical direction and the horizontal direction, because
this system is 2-dimensional array. Five phase states have
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Figure 4: Sign of initial value of each oscillator of Fig. 2.
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Figure 5: Sign of initial value of each oscillator of Fig. 3.

to be considered for an oscillator of 2D lattice, because the
in-phase synchronization and the anti-phase synchronization
are exist in the same time. Therefore, five types synchroniza-
tion states are observed in 2D lattice as follows:

1. fiiii: Four phase states are the in-phase synchronization.

2. fiiia: Three of four phase states are the in-phase syn-
chronization. Another phase state is the anti-phase syn-
chronization.

3. fiiaa: Two of four states are the in-phase synchroniza-
tion. Other phase states are the anti-phase synchroniza-
tion.

4. fiaaa: Three of four phase states are the anti-phase syn-
chronization. Another phase state is the in-phase syn-
chronization.

5. faaaa: Four phase states are the anti-phase synchroniza-
tion.

The phase difference is calculated as follows. A phase dif-
ference between OSC(k,l) and OSC(k + 1, l) and a phase
difference between OSC(k,l) and OSC(k, l + 1) are ob-
tained. The phase difference are assumed as Φ(k,l)(k+1,l)(a)
and Φ(k,l)(k,l+1)(a), respectively. The Φ(k,l)(k+1,l)(a) and
Φ(k,l)(k,l+1)(a) are obtained by Eq. (9) (see Fig. 8).

Φ(k,l)(k+1,l)(a) =
τ(k,l)(a) − τ(k+1,l)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 2π [rad]

Φ(k,l)(k,l+1)(a) =
τ(k,l)(a) − τ(k,l+1)(a)
τ(k,l)(a) − τ(k,l)(a − 1)

× 2π [rad].
(9)

Propagation mechanism of the phase-inversion wave is
shown in Table 1(see Fig. 9), and the propagation mecha-
nism of the horizontal phase-inversion wave is shown in Ta-
ble 2(see Fig. 10)

4. Conclusion
We analyzed the phase-inversion waves on simultaneously

existing two synchronization modes on 2D oscillator net-
works. We clarified regions of phenomena with the phase-
inversion waves in the in-and-anti-phase synchronization for
vertical direction and the in-phase synchronization for hori-
zontal direction. Furthermore, the propagation mechanisms
of the phase-inversion waves were analyzed.
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Figure 6: Regions of when N=9.
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Figure 7: Regions of when N=10.
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Figure 8: The calculation method of the instantaneous fre-
quencies and the phase differences.
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Table 1: Propagation mechanism of a phase-inversion wave
in a column (see Fig. 9).

no. Mechanism

0 At first, Φ(3.3)(4,3) is −π, Φ(4,3)(5,3), Φ(4,2)(4,3), Φ(4,3)(4,4),
Φ(5,2)(5,3) and Φ(5,3)(5,4) are 0, and Φ(5.3)(6,3) is π. The verti-
cal phase-inversion wave comes from 0th row to 3rd row in the
in-and-anti-phase synchronization in each column.

1 Φ(3,3)(4,3) starts to change from −π toward −2π by the vertical
phase-inversion wave.

2 f(4,3) starts to change from fiiia to fiiii, because Φ(3.3)(4,3)

is changing from −π to −2π and Φ(4,2)(4,3), Φ(4,3)(4,4) and
Φ(4,3)(5,3) are 0.

3 Φ(4,3)(5,3) starts to change from 0 to π, because f(4,3) is chang-
ing from fiiia to fiiii, and f(5,3) is not changed from fiiia yet.
Φ(4,2)(4,3) and Φ(4,3)(4,4) are 0, because f(4,2), f(4,3), and f(4,4)

are changing from fiiia to fiiii at same time by each vertical
phase-inversion wave.

4 f(5,3) starts to change from fiiia toward fiiaa , because Φ(4,3)(5,3)

is changing from 0 to π, Φ(5,2)(5,3) and Φ(5,3)(5,4) are 0, and
Φ(5,3)(6,3) is π.

5 Φ(5,3)(6,3) starts to change from π toward 0, because f(5,3) is
changing from fiiia to fiiaa.

6 f(4,3) starts to change toward fiiia again without arriving at fiiii,
because Φ(3,3)(4,3) is changing to 2π, Φ(4,3)(5,3) is changing to
π, and Φ(4,2)(4,3) and Φ(4,3)(4,4) is 0. So, three of four phase
states around OSC(4,3) are changing toward the in-phase syn-
chronization state, and another phase state is changing toward
anti-phase synchronization.

7 f(5,3) starts to change toward fiiia again without arriving at fiiaa,
because Φ(4,3)(5,3) is changing to π, Φ(5,3)(6,3) is changing to 0,
and Φ(5,2)(5,3) and Φ(5,3)(5,4) is 0.

8 Φ(3,3)(4,3) arrives at −2π.

9 f(4,3) arrives at fiiia again.

10 Φ(4,3)(5,3) arrives at π.

11 f(5,3) arrives at fiiia again.

12 Φ(5,3)(6,3) arrives at 0.

The vertical phase-inversion wave
propagate by this mechanism.
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Figure 9: Transitions of frequencies and phase differences by
propagation of a phase-inversion wave in columns.

Table 2: Propagation mechanism of a phase-inversion wave
in a row (see Fig. 10).

no. Mechanism

0 Φ(2,13)(2,14), Φ(2,14)(2,15), Φ(2,15)(2,16), Φ(1,14)(2,14) and
Φ(1,15)(2,15) are 0. Φ(2,14)(3,14) and Φ(2,15)(3,15) are π. The
horizontal phase-inversion wave comes from 11th column to
13th column in the in-phase synchronization in each row.

1 Φ(2,13)(2,14) starts to change from 0 toward −π by the horizontal
phase-inversion wave.

2 f(2,14) starts to change from fiiia toward fiiaa , because
Φ(2,13)(2,14) is changing from 0 to −π, Φ(1,14)(2,14) and
Φ(2,14)(2,15) are 0 and Φ(2,14)(3,14) is π. Φ(1,14)(2,14) and
Φ(2,14)(3,14) don’t change, because f(1,14), f(2,14), and f(3,14) are
similarly changed by each horizontal phase-inversion wave.

3 Φ(2,14)(2,15) starts change from 0 toward −π, because f(2,14) is
changing from fiiia to fiiaa.

4 f(2,14) continuously changes toward fiaaa, because Φ(2,13)(2,14)

and Φ(2,14)(2,15) are changing from 0 to −π, Φ(1,14)(2,14) is 0 and
Φ(2,14)(3,14) isπ.

5 f(2,15) starts to change from fiiia toward fiiaa , because
Φ(2,14)(2,15) is changing from 0 to −π, Φ(2,15)(2,16) and
Φ(1,15)(2,15) are 0 and Φ(2,15)(3,15) is π.

6 Φ(2,15)(2,16) starts to change from 0 toward π, because f(2,15) is
changing from fiiia to fiiaa.

7 f(2,15) continuously changes toward fiaaa, because Φ(2,14)(2,15)

and Φ(2,15)(2,16) are changing from 0 to π, Φ(1,15)(2,15) is 0 and
Φ(2,15)(3,15) is π.

8 Φ(2,13)(2,14) arrives at −π.
9 f(2,14) arrives at fiaaa.

10 Φ(2,14)(2,15) arrives at −π.
11 f(2,15) arrives at fiaaa.

12 Φ(2,15)(2,16) arrives at −π.
The horizontal phase-inversion wave

propagate by this mechanism.
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Figure 10: Transitions of frequencies and phase differences
by propagation of a phase-inversion wave in rows.
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