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Abstract—In this paper, a modified Capon beam-
former (MCB) is proposed for estimating the direction-of-
arrivals (DOAs) of multiple noncoherent narrowband sig-
nals, where the computationally expensive eigendecompo-
sition is not required. Further the relation between this
nonparametric estimator and the well-known parametric
method called the multiple signal classification (MUSIC) is
studied, where it is clarified that by increasing the power of
the inverse of the array covariance matrix, the resolution of
the MCB can be improved significantly compared with the
standard Capon beamformer (SCB) and as better as that of
MUSIC regardless of the signal-to-noise ratio (SNR). The
effectiveness of the proposed MCB and the performance
analysis are verified through numerical examples.

1. Introduction

Direction-of-arrival (DOA) estimation of multiple nar-
rowband signals incoming on an array of sensors is of great
importance in a variety of applications, such as radar, sonar,
astronomy, and seismology (e.g., [1]–[2]). The beamform-
ing is one of the oldest ideas for DOA estimation in array
processing [3], and perhaps the most well-known one is the
Capon beamformer [4]. The standard Capon beamformer
(SCB) has the advantage that any assumption about the s-
tatistical properties of the array data is not required and
hence it can be used in situations, where the information
about these properties is unavailable (e.g., [2]), but it does
not have the best resolution as the parametric methods such
as the multiple signal classification (MUSIC) [5], which is
a relatively simple and efficient subspace-based DOA esti-
mation method and the large sample realization of the max-
imum likelihood (ML) method in the presence of uncorre-
lated incident signals [6]. Furthermore, the SCB can be ap-
plied to the array with arbitrary geometrical configurations
and is computationally efficient than the (spectral) MU-
SIC method, where the computationally intensive eigende-
composition is involved besides the one-dimensional (1-D)
searching (cf., [1], [12]), and it may become a tremendous
computational burden in the practice applications of arrays
with large numbers of sensors. However, the DOA estima-
tion performance of the SCB degrades significantly and it is
difficult to distinguish the closely spaced incident signals,

when the signal-to-noise ratio (SNR) is low or the number
of snapshots is small.

The relation between the Capon beamformer and the
MUSIC method was studied in [7], where it was shown
that the resolution of the Capon beamformer can be equal
to that of MUSIC when the SNR tends to infinite. In an
attempt to alleviate the limitations of the SCB, some mod-
ifications were proposed [8]–[12]. However, there are no
existing techniques for selecting the weighting matrix [12]
and the weight parameter [10], while the eigendecomposi-
tion is required in [9], and Cholesky decomposition and the
selection of LP model order are needed in [11].

Therefore in this paper, we investigate the DOA esti-
mation of multiple noncoherent narrowband signals in a
computationally efficient way and propose a new modified
Capon beamformer (MCB) to overcome the limitation of
the SCB, where the eigendecomposition is avoided. Fur-
ther the relation between the MCB and the MUSIC method
is clarified explicitly, where it is shown that by increasing
the power of the inverse of the array covariance matrix, the
effect of signal components in the spatial spectrum can be
reduced and hence the resolution of the MCB can be im-
proved significantly compared with the SCB and as better
as that of the MUSIC method regardless of the SNR. The
effectiveness of the proposed MCB is verified through nu-
merical examples.

2. Problem Formulation

We consider an array composed of M sensors with the
intersensor spacing d and p (p < M) noncoherent nar-
rowband signals {sk(n)}pk=1 with the wavelength λ incom-
ing from far-filed along the distinct directions {θk}pk=1. The
received array data at the nth snapshot can be expressed as

y(n) = A(θ)s(n) + w(n) (1)

where y(n), s(n) and w(n) are the vectors of the received
noisy data, incoming signals and additive noise given by
y(n) , [y1(n), y2(n), · · · , yM(n)]T , s(n) , [s1(n), s2(n),
· · · , sp(n)]T and w(n) , [w1(n),w2(n), · · · ,wM(n)]T , A(θ)
is the array response matrix given by A(θ) , [a(θ1),
a(θ2), · · · , a(θp)], while the array response vector a(θk) is
related with the array configuration, and ( · )T denotes the
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transpose. For the uniform linear array (ULA), a(θk) =
[1, e jτ(θk), · · · , e j(M−1)τ(θk)]T , and τ(θk) , 2πd sin(θk)/λ.

We make the basic assumptions that the incoming signal-
s {sk(n)}pk=1 are temporally complex Gaussian random pro-
cess with zero-mean and mutually uncorrelated. The ad-
ditive noises {wm(n)}Mm=1 are temporally and spatially com-
plex white Gaussian random process with zero-mean and
variance σ2 and uncorrelated with the incoming signals.
The number of incoming signals p is known or estimated
in advance by using the detection methods (cf., [13]).

Under the basic assumptions, from (1), we easily obtain
the covariance matrix R of the received array data

R , E{y(n)yH(n)} = A(θ)Rs AH(θ) + σ2IM . (2)

In practice, where the finite snapshots of array data are
available, R is unavailable and usually replaced by its sam-
ple estimate R̂ given by

R̂ =
1
N

N∑
n=1

y(n)yH(n) (3)

where N is the number of snapshots.

3. Modified Capon Beamformer for DOA Estimation

3.1. Standard Capon Beamformer [4]

The SCB [4] is a nonparametric DOA estimator, which s-
elects the weight vector w̄ to maintain a fixed gain at a “look
direction” while to maximally reject the signals coming
from other directions by using the following constrained
quadratic problem [4]

min
w̄

w̄H Rw̄ subject to w̄H a(θ) = 1. (4)

By exploiting some techniques such as Lagrange optimiza-
tion method, when the number of snapshots is finite, we
can obtain the weight vector w̄SCB as

w̄SCB =
R̂−1a(θ)

aH(θ)R̂−1a(θ)
. (5)

Noting that the presence of additive noise will ensure R̂ is
invertible, the DOAs {θk}pk=1 can be estimated from the loca-
tions of the p highest peaks of the Capon spatial spectrum
(i.e., array output power) PSCB(θ) given by

PSCB(θ) =
1

fSCB(θ)
(6)

where fSCB(θ) , aH(θ)R̂−1a(θ).

3.2. Modified Capon Beamformer

Now by replacing R in the standard Capon constraint
function in (4) with Rm, where m is a positive integer (i.e.,

m ≥ 1), we can obtain a MCB to design the optimal weight
vector w̄ by solving the following problem

min
w̄

w̄H Rmw̄ subject to w̄H a(θ) = 1. (7)

Similarly for the case of finite snapshots, the solutions to
the weight vector and the MCB spatial spectrum are given
by

w̄MCB =
R̂−ma(θ)

aH(θ)R̂−ma(θ)
(8)

PMCB(θ) =
1

fMCB(θ)
(9)

where fMCB(θ) is the MCB cost function defined by

fMCB(θ) , aH(θ)R̂−ma(θ). (10)

Apparently the DOAs {θk}pk=1 can be estimated by maximiz-
ing the spectrum PMCB(θ) in (9) without the procedure of
eigendecomposition. Note that the proposed MCB in (9)
reduces to the SCB in (6) when m = 1, while it turns in-
to the modified Capon method considered in [8] and the
improved Capon method with W = IM suggested in [12]
when m = 2.

4. Mathematical Link between MCB and MUSIC

Here we focus on examining the relationship between
the standard and modified Capon beamformers and the
subspace-based MUSIC method [5].

4.1. MUSIC Method [5]

From (2), the eigenvalue decomposition (EVD) of the
covariance matrix R is given by

R = UΣUH = UsΣsUH
s + UnΣnUH

n (11)

where U , [Us,Un], Us , [u1,u2, · · · ,up], Un ,
[up+1,up+2, · · · ,uM], Σ , diag[Σs,Σn], Σs , diag(λ1,
λ2, · · · , λp), Σs , diag(λp+1, λp+2, · · · , λM), and (ui, λi) is
the ith eigenpair of R with λ1 ≥ · · · ≥ λp ≥ λp+1 =

· · · = λM = σ
2, while Us and Un correspond to the sig-

nal and noise subspaces, and UUH = IM . By utilizing
the properties that Us and A have the same column space
and the noise subspace Un is their orthogonal complemen-
t, i.e., UH

n A = O(M−p)×p, when the number of snapshots is
finite, the (spectral) MUSIC method estimates the DOAs
by searching the p highest peaks of the following “spatial
spectrum” given by

PMUSIC(θ) =
1

fMUSIC(θ)
(12)

where fMUSIC(θ) is the MUSIC cost function defined by

fMUSIC(θ) , aH(θ)ÛnÛH
n a(θ)

=

M∑
i=p+1

|aH(θ)ûi|2 =
M∑

i=p+1

fi(θ) (13)

- 117 -



where fi(θ) , |aH(θ)ûi|2.
The performance of the MUSIC method has been stud-

ied extensively (e.g., [14]), and it is known that the MU-
SIC method is statistically efficient in cases when either
the number of snapshots or the SNR is sufficiently large,
but its computational cost is high due to the procedure of
the eigendecomposition. The MUSIC method has higher
resolution than the SCB does mainly because the utiliza-
tion of the property that the noise subspace is orthogonal to
the columns of A(θ).

4.2. Relation Between MCB and MUSIC

According to (11), the inverse of the array covariance
matrix R can be obtained

R−1 = UΣ−1UH = UsΣ
−1
s UH

s + σ
−2UnUH

n . (14)

Hence from (14), we easily have

R−m = UΣ−mUH = UsΣ
−m
s UH

s + σ
−2mUnUH

n . (15)

Then when the number of snapshots is finite, the EVD of
the sample estimate R̂ in (3) is given by R̂ = ÛΣ̂ÛH

, where
Σ̂ = diag(λ̂1, λ̂2, · · · , λ̂M), and λ̂1 ≥ · · · > λ̂p ≥ λ̂p+1 ≥
· · · ≥ λ̂M > 0, and hence the MCB cost function fMCB(θ) in
(10) can be expressed as

fMCB(θ) = aH(θ)
(
ÛsΣ̂

−m
s ÛH

s +

M∑
i=p+1

λ̂−m
i ûiûH

i

)
a(θ)

= aH(θ)ÛsΣ̂
−m
s ÛH

s a(θ) +
M∑

i=p+1

λ̂−m
i fi(θ). (16)

Further when the number of snapshots is sufficiently large,
we have lim

N→∞
λ̂i = σ

2 (i = p + 1, · · · ,M), and in the case

of SNR , ∞ (i.e., σ2 , 0), from (13), (15) and (16), we
easily obtain

lim
N→∞

fMCB(θ) = aH(θ) lim
N→∞

(
ÛsΣ̂

−m
s ÛH

s

)
a(θ)

+

M∑
i=p+1

(
lim

N→∞
λ̂−m

i

)(
lim

N→∞
fi(θ)
)

= σ−2m
(
aH(θ)UsΣ̄

−m
s UH

s a(θ) + lim
N→∞

fMUSIC(θ)
)
(17)

where Σ̄s , diag(λ̄1, λ̄2, · · · , λ̄p), and λ̄i , λi/σ
2. Evi-

dently from (16) and (17), we can find that the MCB cost
function (and hence that of the SCB with m = 1) consists
of two terms, where the first one involves the information
of signal subspace, while the latter one corresponds to the
MUSIC cost function. Consequently the existence of the
term associated with the signal subspace causes the esti-
mation performance of the Capon method in (6) worse than
that of the MUSIC method in (12).
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Figure 1: Spatial spectra of the conventional and modified Capon
beamformers and the MUSIC method for Example 1. (SNR=0dB,
N = 200)

Furthermore by considering the fact that the signal
eigenvalues λ1, · · · , λp are larger than the noise eigenvalues
σ2, i.e., λ̄−1

i < 1 for i = 1, 2, · · · , p and limm→∞ λ̄
−m
i = 0, it

is obvious that the increasing of the power of R−1 (i.e., m)
can effectively weaken the proportion associated with the
signal subspace. Hence from (17), we easily have

lim
N,m→∞

fMCB(θ) = σ−2m lim
N,m→∞

fMUSIC(θ). (18)

As a result, the MCB spatial spectrum becomes equal to
that of the MUSIC method except for a scaled amplitude,
when the power m and the number of snapshots tend to
large enough. Therefore by increasing the power of R−1

(i.e., m) in (10) to eliminate the influence involved the sig-
nal subspace, the DOA estimation performance of the MCB
can be improved significantly, where the procedure of com-
putationally intensive eigendecomposition is not required.

5. Numerical Examples

Now we evaluate the performance of the proposed MCB
method for estimating DOAs of uncorrelated narrowband
signals with some numerical examples. Two uncorrelated
signals with equal power and distinct angles θ1 = 5◦ and
θ2 = 17◦ imping on a ULA composed of M = 6 sensors
spaced half-wavelength apart (i.e., d = λ/2).

Example 1—Improved Resolution through Spatial Spec-
tra Searching: Firstly we examine the spatial spectra of the
SCB [4], the modified Capon beamformer with eigenvec-
tor method [9], [3], and the proposed MCB with different
powers of R̂−1

(i.e., m). The results are obtained from 100
independent trials and plotted in Fig. 1, where that of the
(spectral) MUSIC [5] is also shown for comparison. We
notice that the SCB and the MCB with m = 2 cannot pro-
vide evident peaks at the incoming directions, hence they
fail to distinguish this two incident signals. However, by
increasing the power m which can efficiently weaken the
proportion associated with the signal subspace in (17), the
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)

Figure 2: RMSEs of the estimation of θ̂1 verse (a) SNR and (b)
the number of snapshots (dashed line: SCB; solid line with “o”:
MCB with m = 2; dotted line with “×”: MCB with m = 3; solid
line: MCB with m = 4; dash-dotted line: (spectral) MUSIC; solid
line with “�”: root-MUSIC; dotted line: CRB) for Example 2
(N = 200) and Example 3 (SNR=0dB).

MCB with m = 3 and m = 4 succeeds in estimating these
two DOAs and its resolution gradually approximate that of
the (spectral) MUSIC exactly as it is derived in (18) .

Example 2—Performance versus SNR: Now we verify
the performance of the MCB in (16) against SNR, while the
SCB, the (spectral) MUSIC are also included for a compar-
ison. The root-MUSIC [15] and the stochastic Cramer-Rao
lower bound (CRB) [14] are plotted for reference. The re-
sults are obtained from 1000 independent trials. The empir-
ical root-mean-square errors (RMSEs) of the estimates θ̂1
against SNR are shown in Fig. 2(a). Obviously the MCB
completely outperforms the SCB, and especially its perfor-
mance becomes better with the increase of the power m
even at low SNRs. For high SNRs, the proposed method
and the (spectral) MUSIC provide similar small estimation
errors which are very close to CRBs.

Example 3—Performance versus Number of Snapshots:
Here we test the performance of the proposed method in
terms of the number of snapshots. Other simulation con-
ditions are similar to those in Example 2. From the results
depicted in Fig. 2(b), it is clear that the RMSEs of the M-
CB decrease significantly with the increase of the number
of snapshots, while the RMSEs of the SCB (m = 1) remain
large for all numbers of snapshots. In addition, the RMSEs
of the MCB get closer to that of the (spectral) MUSIC with
the increase of m though the number of snapshots is small.

6. Conclusions

In this paper, a new modified Capon estimator called
MCB was proposed for DOA estimation of noncoheren-
t signals, where the computationally expensive procedure
of eigendecomposition is avoided, and the connection be-
tween the proposed MCB and the MUSIC was studied.
The resolution of the MCB can be improved significantly

compared with the SCB and as better as that of the MU-
SIC method regardless of the SNR. The simulation result-
s examined the effectiveness and validity of the proposed
method.
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