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Investigation of Multi-Layer Perceptron with Pulse Glial Chain
Based on Individual Inactivity Period
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Abstract—In this study, we propose a Multi-Layer Percep-
tron (MLP) with pulse glial chain based on individual inactivity
period which is inspired from biological characteristics of a glia.
In this method, we one-by-one connect a glia with neurons in
the hidden-layer. The connected glia is excited by the connecting
neuron output. Then, the glia generates the pulse. This pulse is
input to the connecting neuron threshold. Moreover, this pulse is
propagated into the glia network. Thus, the glia has a position
density each other. In this network, a period of inactivity of
the glia is dynamically changed according to pulse generation
time. In the previous method, we fix the period of inactivity,
thus the pulse generation pattern is often fixed. It is similar to
the local minimum. By varied the period of inactivity, the pulse
generation pattern obtains the diversity. We consider that this
diversity of the pulse generation pattern is efficiency to the MLP
performance. By the simulation, we confirm that the proposed
MLP improves the MLP performance than the conventional
MLP.

I. INTRODUCTION

Human brain has two kinds of nervous cells which are

the neuron and the glia. We have considered that a
human cerebration is only made by the neurons. Because
the neuron can transmit an electric signal each other and
this phenomenon was found at an earlier stage of a research.
Actually, the transmission of the electric signal has a high
relationship for the human cerebration and it achieved some
positive results. On the other hand, we considered that the
glia was a support cell for the neuron. However, some
researchers discovered that the glia has novel glia functions
[1][2]. The glia can transmit signal by using ions concentra-
tions which are a glutamate acid, an adenosine triphosphoric
acid (ATP), calcium (Ca®T), and so on [3][4]. These ions
are also used in a gap junction of the neuron. Among them,
the Ca?* is important for the transmission of information
between the glia. The concentration change of the Ca®*"
induces the stimulus from the neuron. The Ca?* propagates
to the other glias. The glia is considered that the glia and the
neuron closely related. Moreover, the glia makes the different
network from the neuron. Currently, we should consider to
a network between the neuron and the glia.

The glia-neural network is important for a detailed inves-
tigation of the brain works. However, the brain research is
mainly about the neuron. Especially, the application of the
glia has not almost investigated. We therefore applied the
glia characteristics to a Multi-Layer Perceptron (MLP) for the
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application of the glia. The MLP is a famous artificial neural
network. This network is composed of layers of neurons.
The MLP is generally learned by a Back Propagation (BP)
algorithm [5]. By this learning, the MLP can be applied to a
pattern learning, a data mining, and so on. However, the BP
algorithm has a local minimum problem because this learning
algorithm uses the steepest decent method. The MLP does
not have the connections in the same layer. The neurons
connect to different layer of neurons thus the neurons do
not correlate in the same layer. In the previous study, we
proposed the MLP with pulse glial chain in IJCNN’12 [6].
In the previous model, we connect the glia with the neurons
for solving these problems. The glia is connected with the
neurons in the hidden-layer and the neighboring glias, and
it generates the pulse according to the connecting neuron
output. The generated pulse is propagated to the connecting
neuron and the other glias. We consider that the glia pulse
gives position relationships of the neuron in the hidden-layer
and an energy for escaping out from the local minimum.
From the previous study, we confirmed that the previous
model has a better performance than the standard MLP.
However, the previous model has a problem. This problem
is that the pulse generation pattern is often converged in the
previous model. Every glia has the same parameters. Thereby
whole pulse generation pattern is depended on the one glia
influence.

In this study, we propose the MLP with pulse glial chain
based on individual inactivity period. We introduce the indi-
vidual period of inactivity to each glia. If the glia is excited
by the connecting neuron output, the glia cannot be excited
again during the period of inactivity. The previous model
has same time length of the period of inactivity, thereby
the generation pulse pattern becomes the same cycle. In this
method, the time length of the period of inactivity is varied to
a short when the glia is continuously excited. The glia which
is excited at short interval, obtains different pulse generation
cycle. We consider that the varying the period of inactivity
breaks the periodic pulse generation. The network learning
obtains the diversity. By the computer simulation, we show
that the pulse generation pattern becomes the diversity.
Moreover proposed network has a better performance than
the conventional method.

II. PROPOSED METHOD

In this study, we propose the MLP with pulse glial chain
based on individual inactivity period as shown in Fig. 1. We
connect the glias to the neurons in the hidden-layer. The
glia makes the different network from the neural network.



Firstly, the glia receives the connecting neuron output. If
it is over the excitation threshold of the glia, the glia is
excited. The excited glia generates the pulse. This pulse can
have a negative value and a positive value. It is depended
on the connecting neuron output. After that, the pulse is
input to the connecting neuron threshold. Moreover, the pulse
influences to the neighboring glias. The neighboring glias are
also excited by this pulse independent from the connecting
neuron output. Thus, the pulse is propagated into the glia
network. The pulse gives the energy to the network, because
the glia pulse is independent from the network learning.
Moreover, pulse propagation gives the position relationship
with each neuron in the hidden-layer. The pulse generation
time is similar each other. In the previous method, we fix
the period of inactivity. The period of inactivity decides the
cycle of the pulse generation. Then the pulse generation
often became the periodic. We consider that it reduces the
possibility of escaping out from the local minimum. In the
proposed method, we vary the period of inactivity according
to the glia excitation. When the same glia is continuously
excited by the connecting neuron, the period of inactivity of
this glia becomes a short. The glia obtains the different period
of inactivity each other with time. Thus, this glia exits the
periodic pulse generation because the neighboring gila does
not finish the period of inactivity when this glia finishes the
period of inactivity.

Neuron

Fig. 1. MLP with pulse glial chain based on individual inactivity period.

A. Glia response

The glia has two different states which are the positive
response and the negative response. We define the output
function as the positive response of the glia in Eq. (1).

Pi(t+1) =
1, {(Gn <y U wi—i-l,i—l(t — 7% D) = 1)
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where 1) is an output of a glia, ¢ is a position of the glia, 6,,
is a glia threshold of excitation, y is an output of a connected
neuron, D is a delay time of a glial effect, 7 is local time
of the glia during a period of inactivity, 6, is a length of
the period of inactivity, v is an attenuated parameter. In
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the proposed method, the length of the period of inactivity
is varied according to the pulse generation. If the glia is
continuously excited by the connecting neuron output, the
length of the period of inactivity becomes a short. Moreover,
if the glia is excited by the neighboring glia pulse, the period
of inactivity of this glia returns to original time length of the
period of inactivity. Figure 2 shows the two different pulse
generation. In the upper figure, the pulse generation cycle
becomes short with time. The bottom figure has periodic
pulse generation. In the glia network, the both glias exist
at one time. Thereby, we consider that the pulse generation
pattern is dynamically changed in the proposed method.
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Fig. 2. Varying period of inactivity. (a) The length of the period of inactivity
becomes short with time. (b) Periodic pulse generation.

B. Pulse propagation

Figure 3 shows an example of the pulse generation and
a propagation. In this figure, some glias are excited and
pulse generates. If the glia receives the large output of the
connecting neuron, this glia generates the positive pulse. If
the glia receives the small output of the connecting neuron,
this glia generates the negative pulse. The red part shows the
negative value pulse, the blue part shows the positive value
pulse. After that this pulses are propagated to the other glias.
Both pulse generations are similar pattern at first. In the case
of (a), we can observe a small change of the pulse generation
pattern. The pulse generation pattern is fixed with time. On
the other hand, the pulse generation pattern (b) piecemeal
varies from (a). Moreover, the pulse generation pattern (b)
varies for a long time than (a). From the figure, the proposed
network breaks the periodic pulse generation and makes the
diversity.

C. Updating rule of neuron

The neuron has multi-inputs and single output. We can
change the neuron output by the tuning the weights of
connections. The standard updating rule of the neuron is
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(a) Previous pulse generation (b) Proposed pulse generation

Fig. 3. Pulse generation and propagation. (a) The pulses are generated by
the previous glia network. (b) The pulses are generated by the proposed glia
network.

defined by Eq. (2).

yit+1) =7 Z wij(H)a;(t) = 0:(t) |, )

where y is an output of the neuron, w is a weight of
connection, x is an input of the neuron, and 6 is a threshold
of neuron. In this equation, the weight of connection and the
threshold of the neuron are learned by BP algorithm. Thus,
the neuron output is depended on the BP learning. Next, we
show a proposed updating rule of the neuron. We add the
glial pulse to the threshold of neuron. We use this updating
rule to the neurons in the hidden layer. It is described by

Eq. (3).
yilt+1) = f | Y wi(t)a;(t) — 0:(t) + avs(t) |, 3)
j=1

where « is a weight of the glial effect. We can change the
glial effect by change of a. In this equation, the weight of
connection and the threshold are changed by BP algorithm as
same as the standard updating rule of the neuron. However,
the glial effect is not changed. It is updated by Eq. (1).

Equations (2) and (3) are used a sigmoidal function to an
activating function which is described by Eq. (4).

f(a) @

where a is an inner state.

III. SIMULATIONS

We compare five kinds of the MLPs;

(1) The standard MLP.

(2) The MLP with random noise.

(3) The MLP with pulse glial chain.

(4) The MLP with pulse glial chain based on individual
inactivity period (The period of inactivity is random.).
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(5) The MLP with pulse glial chain based on individual
inactivity period (The period of inactivity is varied
according to the pulse generations.).

The network of (1) does not have the external unit, thus this
network is often falls into local minimum. The network of
(2) noise has an uniformed random noise. The network of
(3) has same period of inactivity in every glia. In the (4),
every glia has different the length of the period of inactivity
which is decided at random. Every MLP has same number of
neurons and layers. The MLP is composed of 2-40-1 neurons.
We obtain the experimental result from 100 trials. Every trial
has different initial conditions. One trial has 50000 iterations.
We use Mean Square Error (MSE) for the error function. The
MSE is described by Eq. (5).

N
MSE = %Z(Tn ~0n)?, ©)
n=1
where N is a number of learning data, 7" is a target value,
and O is an output of MLP. We obtain results which are
an average error, a minimum error, a maximum error, and a
standard deviation of the results.

A. Simulation task

We use a Two-Spiral Problem (TSP) for the simulation
task which is shown in Fig. 4. The TSP is famous task for the
artificial neural network [7][8]. It has high nonlinearity. Thus,
the standard MLP often falls into the local minimum. In this
task, we input the spiral coordinates to the MLP (shown as
Fig. 4). After that the MLP learns the classification of the
spiral. We change the number of spiral points (98 and 130
points) and obtain the result from two simulations. Figure 5
shows that a classification of x — y plane which is obtained
from a norm of each coordinate.
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Fig. 5. Classification of Two-Spiral Problem in  — y field.



B. Simulation results

1) The number of spirals are 98: Firstly, we use the 98
spiral points to the learning of the MLP. The learning perfor-
mance means the fitting between the output of the MLP and
the supervised classification. Table I shows the experimental
result of the learning performance. Every method improves
the performance than the standard MLP. From this result,
we can see that the proposed MLP has a three times better
performance than the MLP with pulse glial chain. The MLP
with pulse glial chain and proposed MLP have the better
performance than the MLP with random noise, thus the pulse
is efficient to the MLP learning. Moreover, we consider that
the pulse generation pattern is important to the MLP learning.

TABLE I
LEARNING PERFORMANCE OF SPIRAL OF 98 POINTS.

Average  Minimum Maximum  Std. Dev.
(1) 0.04153 0.00017 0.18387 0.02637
(2) 0.03711 0.00006 0.17352 0.02946
(3) 0.01531 0.00009 0.06157 0.01636
4) 0.01791 0.00016 0.18380 0.02415
(5) 0.00444 0.00016 0.04151 0.00956

Table II shows the classification performance. We input
the unlearning coordinates to the MLP which finishes the
learning. After that we obtain the output of the MLP in
correspondent of the input coordinates. We compare the true
classification and the output of the MLP. The true classifica-
tion is obtained from norm between the input classification
and the learning spiral coordinate. The trend of the results
is similar to the learning performance. We can see that the
proposed MLP is only under 0.1 in the average of error.
In the learning performance, the proposed MLP has a high
ability. In general, the MLP becomes the over fitting when it
has too much learning, because the MLP falls the deep local
optimum solution. However the proposed MLP can classify
the unknown data than the others, it means that the proposed
MLP has a high generalization capability. From this result,
our method can find a better solution. Moreover it can search
a wide range of a solution space.

TABLE 11
CLASSIFICATION PERFORMANCE OF SPIRAL OF 98 POINTS.

Average  Minimum  Maximum  Std. Dev.
(1) 0.15029 0.08085 0.21127 0.02434
(2)  0.13966 0.08083 0.20378 0.02879
(3)  0.10980 0.06408 0.15069 0.01902
(4) 0.11647 0.07176 0.17159 0.02310
(5)  0.09565 0.06188 0.17970 0.01773

Figure 6 shows the classification of unknown coordinates
when the MLP learns the 98 spiral points. We obtain these
figures from the near average result in Table II. The standard
MLP, the MLP with random noise, and the MLP with pulse
glial chain based on individual inactivity period (The period
of inactivity is random.) cannot draw the spirals. These MLPs
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have crack at the periphery of (z,y) = (1,0.5). The MLP
with pulse glial chain can draw the two spirals, however it
also has some errors at the periphery of (x,y) = (1,0.5).
A border value of the two spirals becomes about (z,y) =
(1,0.7). On the other hand, our proposed MLP can obtain
the two spirals in the field, moreover it does not have the
large error in every area.
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(a) Standard MLP. (b) MLP with random noise
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(c) MLP with pulse glial chain. (d) Proposed MLP (random).

(e) Proposed MLP.

Fig. 6. Classification of two spirals of 98 points for unknown coordinates.

2) The number of spirals are 130: Secondly, we show
the learning performance of the spirals of 130 points. Of
course, the TSP becomes difficult by increasing the number
of the spiral points. In this case, the number of turns is also
improves, thus this task has stronger nonlinearity than the
previous task. The statistic result shows in Table III. We can
see that the standard MLP often traps into the local minimum.
Thereby, the average of error is the worst of all. The result of
the MLP with random noise is similar to the standard MLP.
From this result, the uniformed random noise is not efficient
to the TSP. Other three MLPs improve the performance from
the result of the standard MLP. Especially, the MLP with
pulse glial chain and the proposed MLP have a good learning
performance. Moreover, the maximum error of the proposed
MLP is the best of all. From this result, we can say that
the proposed MLP has a high ability for escaping out from
the local minimum. Thereby, our proposed MLP reduces an
initial valued dependence. It means that we can stably obtain



the better result.

TABLE III
LEARNING PERFORMANCE OF SPIRAL OF 130 POINTS.

Average  Minimum  Maximum  Std. Dev.
(1)  0.12269 0.00831 0.23857 0.05554
(2) 0.10847 0.00047 0.24278 0.05742
(3) 0.01990 0.00067 0.11664 0.02226
(4) 0.05546 0.00134 0.14481 0.03608
(5) 0.01414 0.00052 0.04851 0.01313

Next, we show the classification performance of the MLPs.
The classification results show in Table IV. The trend of the
simulation results is similar to the learning performance. The
standard MLP and the MLP with random noise are worse
results. The classification performance of the proposed MLP
is the best of all in every index.

TABLE IV
CLASSIFICATION PERFORMANCE OF SPIRAL OF 130 POINTS.

Average  Minimum  Maximum  Std. Dev.
(1) 0.21782  0.10565 0.29477 0.03858
(2) 0.19278  0.10460 0.33065 0.04434
(3) 0.12538  0.08027 0.19639 0.02625
(4) 0.15334  0.09368 0.24328 0.02948
(5) 0.11857  0.06876 0.19142 0.02473

Figure 7 shows learning curves of each MLP. The error
reduction of the standard MLP converges at 25000. It is
trapped into the local minimum. The convergence of the error
in the MLP with random noise is a slower than the others.
Howeyver, it reduces the error than the standard MLP. The
uniformed random noise has a small efficiency to the learning
of the MLP. On the others, these curves have a oscillation
during the iterations. Moreover the performance of the error
reduction improves. The pulse locally gives the large energy
to the network. The pulse helps escaping out from the local
minimum. The glia has the period of inactivity. During the
period of inactivity, the glia does not generate the pulse again.
Thereby, the MLP can search the better solution during the
period of inactivity. The error reduction of the proposed MLP
is earlier than the others. Thus, the pulse generation pattern
influences the learning of the MLP.

By using this result, we compare the proposed MLP with
the MLP with pulse glial chain. The proposed MLP has
a better performance than the MLP with pulse glial chain,
however a difference of superiority in the statistic result is
not observed. Here, we show the error reduction curves of the
proposed MLP and the MLP with pulse glial chain (shown
as Fig. 8) which is obtained from an average error at each
iteration. We can see that the error of the proposed MLP
rapidly decreases from a start of the learning, moreover the
error converges the learning earlier than that of the MLP
with pulse glial chain. We consider that it is an influence of
changing period of inactivity, because the proposed MLP can
vary the pulse generation pattern by changing the period of
inactivity. We consider that the influence of the pulse glial
chain becomes small by convergence of the pulse generation
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Fig. 7. Learning curve.

pattern. Actually, the MLP with pulse glial chain early fix the
pulse generation pattern, thereby the error reduction becomes
gradual with temporal progress.
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Fig. 8. Comparison of the convergence of the proposed MLP and the MLP
with pulse glial chain.

Finally, we show the classification image of the TSP as
shown in Fig. 9. We obtain the classification image from
average result in Table IV. The standard MLP cannot draw
the spirals, thus the solving ability of the standard MLP is
unsatisfactory for the TSP. We can observe the outside circle
of the spiral in the MLP with random noise however it has
any cracks. The MLP with pulse glial chain can classifier the
spirals. The MLP with pulse glial chain based on individual
inactivity period (the period of inactivity is random) has two
cracks. This model is similar to the proposed MLP however
its performance is worse in every result. The proposed MLP
can also separate the two spirals. Moreover, the outside curve



is better than the MLP with pulse glial chain. Actually, the
MLP with pulse glial chain has error near coordinates (0.0,
0.5).
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(c) MLP with pulse glial chain. (d) Proposed MLP (random).
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Fig. 9. Classification of two spirals of 130 points for unknown coordinates.

IV. CONCLUSIONS

In this study, we have proposed the MLP with pulse glial
chain based on individual inactivity period. We connect the
glia to the neuron in the hidden-layer. The glia receives
the connecting neuron output. The glia generates the pulse
when the neuron output is over the excitation threshold
of the glia. This pulse is input to the connecting neuron
threshold and moreover it is propagated to the neighboring
glias. In this method, the period of inactivity is varied
according to the pulse generation time. If the pulse generation
continuously occurs by the connecting neuron output, the
period of inactivity becomes short. By this influence, the
pulse generation pattern is dynamically changed because the
period of inactivity of the glia is different each other. We
consider that the glia pulse improves the MLP performance.
Actually, we confirm that the proposed MLP has a better
performance than the conventional MLP by the computer
simulation.
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