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Abstract

In this study, we investigate synchronization phenomena of
coupled chaotic circuits. First, the chaotic circuits are com-
bined by resisters in one-dimensional coordinate system. We
change the distance between the circuits to adapt the coupling
strength. We investigate the phase difference between the
central circuits using computer simulation. From the com-
puter simulation, the difference synchronization phenomena
are obtained between the full coupled system and the ladder
system.

1. Introduction

Synchronization phenomenon is one of the typical phe-
nomena observed in nature. Recently, many studies have been
investigated synchronization of chaotic circuits [1]∼[5]. It is
focused how the differences of the network structure impact
on the whole circuits. Additionally, it is applicable to the
fields of medical science and biology and so on.

In our research group, we have investigated the clustering
phenomena resulting from the synchronization phenomena
observed in coupled chaotic circuits when the chaotic circuits
are arranged in two-dimensional coordinate[6], [7]. We ob-
served that the chaotic circuits arranged in the near distance
are synchronized at in-phase state, and the coupled circuits
with the far distance could not be synchronized. From the
results we confirmed the relationship between clustering and
synchronization phenomena.

The research about the system arranged in two-
dimensional coordinate is complicated for more detailed re-
searches. So in this study, we investigate the synchroniza-
tion phenomena of coupled chaotic circuits arranged in one-
dimensional coordinate. We combine chaotic circuits by re-
sister, and the circuits are arranged in one-dimensional coor-
dinate system. The number of the circuits is always an even
number and we investigate symmetry systems. We investi-
gate synchronization phenomena by changing the distance
between the circuit and the number of coupling circuits. In

this study, we use two systems. They are the full coupled sys-
tem and the ladder system. In the full coupled system, chaotic
circuits are connected to all chaotic circuits. Figure 1 shows
the system model of the full coupled system. In the ladder
system, chaotic circuits are connected to only adjacent cir-
cuits. Figure 2 shows the system model of the ladder system.
We measure the phase difference between the central circuits
using computer simulations. We compare the results of the
full coupled system and the ladder system.

Figure 1:Full coupled system.

Figure 2:Ladder system.

2. Circuit Model

Figure 3 shows the circuit model. This is a chaotic circuit
called Nishio-Inaba circuit [8]∼[10].

The circuit equations of this circuit are described as Eq. (1).

L1

di1

dt
= v + ri1

L2

di2

dt
= v − vd(i2) (1)

C
dv

dt
= −i1 − i2
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Figure 3:Circuit model.

The characteristic of nonlinear resistance is described as
Eq. (2).
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The circuit equations are normalized as Eq. (3) by changing
the variables as below.
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;

ẋ = αx+ z

ẏ = z − f(y) (3)

ż = −x− βy

The value off(y) is described as Eq. (4).
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We use the chaotic attractor as shown in Fig. 4.

z

x

Figure 4:Chaotic attractor.

The parameters of this attractor are described as below.

α = 0.460

β = 3.0

δ = 470

In this study, we use two systems. The full coupled system
and the ladder system. In the full coupled system, all circuits
are connected to all circuits by resisters. In the ladder system,
chaotic circuits are connected to only adjacent circuits.

When all circuits are connected to all circuits, the circuit
equations are shown in Eq. (5).

dxi

dτ
= αxi + zi

dyi

dτ
= zi − f(yi) (5)

dzi

dτ
= −xi − βyi −

N
∑

j=1

γij(zi − zj)

(i, j = 1, 2, · · ·, N)

Where the parameterγij represents the coupling strength
between the circuits. The value ofγij reflects the distance
between the circuits in an inverse way, described by the fol-
lowing equation:

γij =
g

(dij)2
. (6)

dij denotes the Euclidean distance between thei-th circuit
and thej-th circuit. The parameterg is coupling coefficient
that determines the coupling strengths. In this study, we set
the parameter asg = 1.0× 10−2.

3. Simulation Method

In this study, we use two systems arranged in one-
dimensional coordinate. There are the full coupled system
and the ladder system. We use ten circuits in all simulations.
We divide into the two symmetric groups, and there are five
circuits in one side of the group. The network structure of the
ladder system is shown in Fig. 5.

Figure 5:Network structure.

We change the distance between the circuits by changing
the coupling strength. The value ofd is the distance of the cir-
cuits in the group. After that, we change the distance between
the central circuits. We define the distance between the cen-
tral circuits asdcenter. We change the value of center from
0.1 to 13.0. We investigate the phase difference between the
central circuits. We compare synchronization phenomena of
the full coupled system and ladder system.
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4. Simulation result

Figures 6∼ 8 show the simulation results whend is fixed
with 0.1, 0.3 and 0.5.

From the simulation results, the ladder system becomes
asynchronous quickly in Figs. 6∼ 8. The central circuits
become asynchronous arounddcenter = 2.0. However, in the
full coupled system, the way of a change in the phase differ-
ence is different by the value ofd. So we focus on the full
coupled system as follows.

In the case ofd = 0.1, the phase difference increases in
small steps, and the central circuits become asynchronous
arounddcenter = 11∼ 12. In the case ofd = 0.3, the phase
difference increases with the case ofd = 0.1. Although the
central circuits in the case ofd = 0.3 become asynchronous
arounddcenter = 9∼ 10. In the case ofd = 0.5, the phase dif-
ference increases quickly. The central circuits become asyn-
chronous arounddcenter = 6∼ 7.

From these results, the relationship between the network
structure and synchronization phenomena on each coupled
system is made clear. We show some examples of the graphic
of phase difference in Fig. 9.

Figure 6:Phase difference (d=0.1).

Figure 7:Phase difference (d=0.3).

Figure 8:Phase difference (d=0.5).

(a) phase difference = 0 (b) phase difference = 10

(c) phase difference = 30 (d) phase difference = 60

(e) phase difference = 90

Figure 9:Graphic of phase difference.
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5. Conclusions

In this study, we have investigated the synchronization phe-
nomena in coupled chaotic circuits networks. We also in-
vestigated the phase difference between the central circuits.
From computer simulation, we obtained the various results
by changing the distance between the central circuits and the
value ofd.

In the ladder system, we obtained the result that the cen-
tral circuits become asynchronous arounddcenter = 2.0 in the
all results. After that, the central circuits are asynchronous
even by increasing the value ofdcenter. From this result, in
the ladder system, we can see that the central circuits are not
impacted from other circuits.

On the other hand, in the full coupled system, the way of a
change in the phase difference is different by the value ofd.
As enlarging the value ofd, the value ofdcenter is gradually
close until the state of asynchronous. From this result, the
difference synchronization phenomena are obtained between
the full coupled system and the ladder system.

In our future works, we would like to investigate asymmet-
ric system and more large scale system.
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