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Abstract

In this study, a novel chaotic circuit is proposed. The circuit
consists of a Colpitts oscillator, a resonator and a diode. By
using a idealized diode model, exact solutions are derived.
Chaotic attractors are shown in circuit experiments and com-
puter calculations of exact solutions.

1. Introduction

Chaos can be observed various field of the natural world.
Therefore, many researchers pay attention to this phe-
nomenon and related phenomena. In a field of electric en-
gineering, chaotic phenomena have been investigated using a
chaotic circuit. Elements of an electric circuit can be obtained
in very low cost and the specific is very high. Additionally,
a chaotic circuit has a simple structure. Thus, it is easy to
generate chaotic phenomena on an electric circuit.

However, designing a novel chaotic circuit is difficult ex-
cept experts like [1]–[3] . A designing method is proposed
in [4]. This method is that coupling an oscillator and a res-
onator with diodes as shown in Fig. 1. The advantage is that
the method is simple. Therefore, this method is very use-
ful method for many researchers. On the other hand, this
advantage is that there is no rule for setting the parameters.
Breaking the disadvantage is essential to make this method
perfected.

In this study, a novel chaotic circuit applied this method
is proposed. The circuit consists of a Colpitts oscillator, a
resonator and a diode. Developing many sample circuits is an
important task for making this method perfected.

2. Circuit Model

Figure 2 is a proposed circuit in this study. A Colpitts oscil-
lator connects to a resonator via a diode. In this model, all el-
ements except a diode are modeled as linear elements. Diode
model is shown in Fig. 3. Its v-i characteristics is shown in
Fig. 4. This model is an idealized model. Using this model,
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Figure 1: Designing method for a chaotic circuit.
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Figure 2: Proposed system.

the analysis becomes easily. In order to investigate validity of
this model, a circuit equation is derived.
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Figure 3: Idealized diode model.
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Figure 4: v-i characteristic of the idealized diode model as
shown in Fig. 3.
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By substituting the normalized variables and the parameters,
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Equations (1), (2) and (3) are normalized as
ẋ1 =

ε

ε+ 1
(−αx1 − x4 − x5 − α),

ẋ3 = ε(−αβx1 − βx3 + x5 − αβ),

ẋ4 = x1,

ẋ5 = δ(x1 − x3 + 1),

(5)

{
ẋ1 = x4,

ẋ4 = x1,
(6)


ẋ2 = ε(−αx2 − x5),

ẋ3 = ε(−γx3 − αβx2 + x5),

ẋ5 = δ(x2 − x3),

(7)

We define two piecewise-linear regions as follows.

R1 ≡ {(x1, x3, x4, x5)|ẋ1 + i1 > 0}

R2 ≡ {(x1, x2, x3, x4, x5)|ẋ2 − x1 − 1 < 0}
(8)

These regions are corresponding to the two state of the diode.
Note that the circuit equations in R2 are completely decou-
pled into two and three dimensional equations. In order to
derive exact solutions, eigenvalues in two regions are derived.
The characteristic equation of the circuit equations in each
linear region is given as follows.
In R1:

(ε+ 1)m4 + ε(α+ β + βε)m3 + ε(αβε+ 2δ
+δε+ 1)m2 + ε2(αβδ + αδ + βδ + β)m+ δε2

= 0.
(9)

In R2: For the resonator,

m2 + 1 = 0. (10)

For the Colpitts Oscillator,

m3 + ε(α+ γ)m2 + ε(αγε+ 2δ)m+ δε2(α+ αβ
+γ) = 0.

(11)

The eigenvalues in each region can be calculated from the
characteristic equations ( 9 ) - ( 11)

From circuit experiment and computer simulation using
Eq. (5) - (7), The eigenvalues are calculated as follows:

R1 : λ1, λ2, σ ± jω

R2(Resonator) : ± j

R2(Colpitts Osc.) : λ, σ1 ± jω1

(12)

Further, the equilibrium points in R1 is described as fol-
lows:

B = [ − α− β − αβ 0 0 0 ]T . (13)
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These values are calculated by making the right-hand side
of Eq. (5) to be equal to zero. The equilibrium point in R2 is
the origin. Then, we can describe the exact solutions in each
linear region as follows.
In R1:

x(τ)−B = F(τ) · F−1(0) · (x(0)−B). (14)

In R2:
For the resonator,

xa(τ) = Ga(τ) ·Ga
−1(0) · (xa(0)). (15)

For the Colpitts osc.,

xb(τ) = Gb(τ) ·Gb
−1(0) · (xb(0)). (16)

In order to derive the Poincaré map, Let us define the follow-
ing subspace

S = S1 ∩ S2. (17)

where

S1 : ẋ1 = −x4 =
ε(−αx1 − x4 − x5 − α)

(ε+ 1)
.

S2 : x2 − x1 = 1.
(18)

The subspace S1 corresponds to the boundary condition be-
tween R1 and R2, while the subspace S2 corresponds to the
ON state of the diode. Namely, S corresponds to the transi-
tional condition from R1 to R2. Let us consider the solution
starting from an initial point on S. The solution returns back
to S again after two subspaces as shown in Fig. 5. Hence, the
Poincaré map can be derived as follows:

T : S → S, x 7→ T(x0). (19)

where x0 is an initial pont on S, while T(x0) is the pint
at which the solution starting from x0 hits S again. The
Poincaré map can be represented as a composit map of the
submaps T1 and T2. Namely, the Poincaré map can be ob-
tained as

T = T1 ◦T2. (20)

3. Circuit Experiments and Computer Calculations

Figure 6 shows the circuit experimental results and com-
puter calculated results. In the circuit experiments, parame-
ters are set as R1 = 1 [kΩ], R3 = 200 [Ω], C1 = 0.10 [µF],
C2 = C3 = 0.022 [µF], L1 = 200[mH] and L1 = 30[mH].
In the computer calculations, parameters are set as α = 1.41,
γ = 4.71, δ = 6.67 and ε = 4.5. R2 and β are set as con-
trol parameters. A periodic orbit is observed in Fig. 6 (1)
and (5). Chaotic attractors are observed in Fig. 6 (2), (3) and

R 2R 1

T1 T2

S

Figure 5: Route map.

(4). These results shows this model does not lose important
features of the original circuit related with the generation of
chaos. Additionally, the nonlinear element is only the diode.
It is mean that the Colpitts oscillator plays a role of expand-
ing and the diode play a role of folding. These are known as
the essence of generating chaos.

4. Conclusion

In this study, the novel chaotic circuit has been proposed.
By applying a idealized diode model, exact solutions of each
regions are derived. Additionally, the Poincaré map is de-
fined. In circuit experiments and computer calculations,
chaotic phenomena are observed.

In our future works, calculating the largest Lyapunov ex-
ponents, the circuit analysis using exact solutions and so on
will be carried out.
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(1)

R2 = 8.60[kΩ] β = 24.5

(2)

R2 = 8.80[kΩ] β = 29.5

(3)

R2 = 10.1[kΩ] β = 33.0

(4)

R2 = 11.3[kΩ] β = 39.5

(5)

R2 = 12.0[kΩ] β = 41.0
(a) (b) (c)

Figure 6: Circuit Experimental Results and Computer Calculation Results. (a) Circuit Experiments. Horizontal axis: v1 ( 1.0
[V/div.] ). Vertical axis: v2 ( 2.0 [V/div.] ). (b) Attractors. Horizontal axis: x1. Vertical axis: x2. Gridlines show 2.5. (c)
Poincaré maps of (b). Horizontal axis: x1. Vertical axis: x2.
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