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Abstract

The ring inhibitory neural network is a typical model to gen-
erate oscillation with a simple structure. Neurons of the ring
inhibitory neural network are connected in one direction in-
hibitory. In this study, we propose the ring inhibitory neu-
ral network with polygonal structure. This model is com-
posed by some ring inhibitory neural networks as conven-
tional model. We confirm that polygonal models which based
on the conventional triquetrous / pentagonal model composed
by three and five neurons can oscillate. In these simula-
tions, polygonal structure models show various oscillations
by changing symmetry and circulation conditions.

1. Introduction

The neural network is calculation models which can repli-
cate some functions of human brain. This is applied to data
processing, data mining, and so on. In addition, the oscil-
lation model of neural network is applied to pattern recog-
nition and walking rhythm outbreak circuit[1]-[4]. The ring
inhibitory neural network is a one of typical oscillation model
with a simple structure and it is composed by connected neu-
rons in one direction. Weights between each neuron are de-
fined as nagative because neurons composing the model are
inhibitory[5].

In this study, we propose the polygonal ring inhibitory neu-
ral network. The structure of polygonal model is constructed
by combined conventional models under some condition. Fu-
turemore, we explain about oscillation and synchronization
phenomena of polygonal structure models.

2. Oscillation System
2.1 Ring Inhibitory Neural Network

Neural networks with limit cycle are classified in two
model. One is the network model which has self-connection,
and the another one does not have self-connection like ring
inhibitory neural networks. We apply the ring inhibitory neu-
ral network which is comprised of connecting neurons in one
direction. The ring inhibitory neural network is composed

with connecting neuron to one direction. Figure 1 shows the
network model of the ring inhibitory neural network. The dy-
namical system of this model is described as Eqs. (1) and (2).
Moreover, the output function is defined to arctangent as
Eq. (2).

τ
dui

dt
= −ui + Wjif(uj) (1)

f(u) = tan−1u (2)

Where τ is the time constant. Neurons of the ring in-
hibitory neural network are connected unidirectionally with
the weight Wji of negative value. The oscillation phase of
this model is same as the number of neuron m. Oscillation is
caused if the weight Wji is set to negative value. In addition,
this model can oscillate if the number of neuron is odd. We
explain about this term to focus on equilibrium point. The
equilibrium point u0 has to fulfill Eq. (3). The state of N1 is
substituted sequentially as follows, when the number of neu-
ron is m.

− ui + Wjif(uj) = 0 (3)

u1 = Wm1f(Wmm−1f(Wm−1m−2 · · ·W21f(u1) · · ·)) (4)

Equation (4) is monotone decreasing function if the num-
ber of neuron m is odd. In case the function f is monotonic
decrease, systems have only one equilibrium point.

Figure 2 shows dynamics of the ring inhibitory neural net-
work which is comprised by three neurons. This model oscil-
lates three-phase waveform. From Eqs. (1) and (2), the equi-
librium point u0 of the ring inhibitory neural network is the
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Figure 1: Ring inhibitory neural network.
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origin. In addition, stability of the equilibrium point depends
on the weight Wji. We define jacobian matrix of the right
side of Eq. (1) as matrix A. The eigenvalue λ of matrix A at
the equilibrium point is calculated from the following Eq. (5).

det|A − λE| = 0 (5)

The equilibrium point is unstable when the ring inhibitory
neural network shows limit cycle. This point is stable if real
parts of all eigenvalues are negative. Therefore, the model
causes hop bifurcation, and it shows limit cycle if the weight
is set to Wji < −2.0.
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Figure 2: Dynamics of triquetrous ring inhibitory neural net-
work (m = 3, Wji = −3.0, τ = 1.0).

2.2 Polygonal Structure Model

In this section, we explain about the polygonal structure
model. In this study, we propose to extend the polygo-
nal structure from the ring inhibitory neural network. The
polygonal models are comprised by connecting some ring
inhibitory neural networks under certain condition. We can
confirm synchronization of neurons and characteristic oscilla-
tion by applying polygonal structure. The dynamical system
of this model is described in Eq. (6). Weights Wji between
coupled neurons are unified negative value each. Whereas,
the weight Wji between disconnected neurons is defined as
zero.

τ
dui

dt
= −ui +

m∑
j=1

Wjif(uj) (6)

In addition, we define some condition of connections.
Connections of neuron are set to one direction which does
not disturb circulation. This connection method obeys the
base model like a triquetrous and pentagonal conventional
network. In other words, the output of neuron circulate
through three neurons, for example N1, N2 and N4 in
Fig. 3(a). Network models of polygonal structure based on
triquetrous / pentagonal ring neural networks are shown on
Figs. 4 and 5 each.

Next, we focus on stability and the equilibrium point of
the polygonal models based on triquetrous network. It is
important that we analyze the equilibrium point to under-
stand the characteristic of the behavior of the system. From
Eqs. (2) and (6), the equilibrium point u0 of the polygonal
model is the origin. This model can oscillate if each neu-
ron causes limit cycle around the origin. Therefore, the equi-
librium point must be unstable. The eigenvalue λ is found

from Eq. (5) if jacobian matrix of the right side of Eq. (6)
is matrix A. The oscillation conditon of m = 7 asymmetry
polygonal model is Wji < −1.1. In the same way, the os-
cillation condition of m = 6 symmetry polygonal model is
Wji < −1.0.

Moreover, Fig. 4(a) shows the non-oscillation network
model which removed some combination from m = 9 polyg-
onal model. This model can not oscillate in spite of having a
unstable condition. Such phenomenon is confirmed in many
non-oscillation models. Now, we define the loop number L.
The loop number L means the number of neurons of the path
through the neurons most in a single stroke. For example, the
loop number of the m = 7 polygonal model is L = 3 by bind-
ing of solid lines like a Fig. 3(a). While the m = 9 polygonal
model has L = 9 due to pass nine neurons when trace solid
lines like a Fig. 3(b). Moreover, the loop number is related
to the oscillation condition. The polygonal model can not os-
cillate except some models if the loop number L is even for
example the non-oscillation model in Fig. 4(d). While models
which have odd loop numbers like Figs. 4(a), 4(b), and 4(c)
can oscillate.

Futuremore, the polygonal model can be split into three
categories, asymmetry models of partial, the one of entire cir-
culation, and symmetry models. The network is determined
as the symmetry model if the number of input and output of
all neurons is the same. The models of Figs. 4(d) and 5(b) are
classified into the symmetry model. The asymmetry model
under the neuronal number m > L is defined asymmetry of
partial circulation. The models of Figs. 4(a), 5(a) and 5(c)
are classified into the asymmetry model of partial circulation.
On the other hand, the asymmetry model of entire circulation
is the case of m = L. The model of Fig. 4(a) is classified
into asymmetry model of entire circulation. The oscillation
of polygonal model varies among these models. From this,
the loop number L is similar as the number of neuron in the
conventional models.

(a) m = 7 model (L = 3). (b) m = 9 model (L = 9).

Figure 3: Polygonal model and circulation route.

3. Simulation Result

In this study, we confirm oscillation by the Runge-Kutta
method. The weight Wji is set to Wji = −3.0. The time
constant τ is set to τ = 2.0.
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(a) m = 7 asymmetry.
(b) m = 6 symmetry.

(c) m = 9 asymmetry.
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(d) Non-oscillation model.

Figure 4: Polygonal model based on m = 3 (triquetrous
model).
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(c) m = 10 asymmetry.

Figure 5: Polygonal model based on m = 5 (pentagonal
model).

3.1 Polygonal Model based on m = 3

In this section, we explain about simulation results of
the polygonal structure model based on conventional model
which was composed by three neurons.

From the m = 7 polygonal model of Fig. 4(a), this model
is classified into an asymmetry model of partial circulation.
This model has the loop number L = 3 and oscillates the
waveform like Fig. 6(a). The m = 7 polygonal asymmetry
model of partial circulation oscillates three-phase waveform,

and each wave pattern has the different amplitude. In addition
to this, neurons which have the same number of input and
output synchronize like u1, u5 and u6. This becomes clear by
calculating the circuit equation.

From the m = 6 polygonal model of Fig. 4(b), this model
is classified into a symmetry model. The loop number L of
this model is L = 6. The waveform which is oscillated by
this model is shown on Fig. 6(a). This model oscillate three-
phase waveform, and each wave pattern has the same am-
plitude only in this case. As a different from the asymmetry
model, only this model can oscillate in spite of having an even
loop number. Neurons at the symmetry position synchronize
like u1 and u5. This becomes clear by calculating a circuit
equation.

From the m = 9 polygonal model of Fig. 4(c), this model
is classified into an asymmetry model of entire circulation.
Figure 6(c) shows the oscillation of this model. The asym-
metry model of entire circulation oscillates nine-phase wave-
form, and each wave pattern has the different amplitude. As
different features with the m = 7 and m = 6 models, this os-
cillates L-phase wave without some models if the loop num-
ber is L only in this case.

The model of Fig. 4(d) can not oscillate, because this
model is asymmetric and the loop number is L = 6. From
this result, we consider that the asymmetric model of even L
can not oscillate.
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(a) Oscillation of m = 7.
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(b) Oscillation of m = 6.
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(c) Oscillation of m = 9.

Figure 6: Oscillation of the polygonal model based on m = 3
triquetrous network (Wji = −3.0, τ = 2.0).
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3.2 Polygonal Model based on m = 5

In this section, we explain about simulation results of the
polygonal model based on m = 5 (pentagonal model). The
m = 5 conventional model oscillates five-phase wave, and
neurons of this model have unified amplitude.

The network model in Fig. 5(a) shows the combination of
the triquetrous and pentagonal models. This model fulfills
condition of asymmetry model of partial circulation. Fig-
ure 7(a) shows an oscillation of this model. The m = 10
polygonal model oscillates five-phase wave, and wave pat-
terns have the different amplitude each. Neurons which have
the same number of input and output synchronize as u1 and
u6. This becomes clear by calculating a circuit equation. The
feature of this model follows an asymmetry model of partial
circulation.

The network model in Fig. 5(b) is the m = 10 symmet-
ric model. This model fulfills condition of the symmetry
model, because values of input and output of all neurons are
the same. The oscillation of this model shows in Fig. 7(b).
The m = 10 model oscillate five-phase wave, and wave pat-
terns have the same amplitude each like the symmetry model
of Fig. 4(b). In addition, neurons located on symmetry os-
cillate same wave like N1 and N8. These models have same
characteristic as the polygonal models based on m = 3 net-
work model.

Figure 5(c) shows the network model of m = 10 asymme-
try. The oscillation of m = 10 asymmetric model is shown in
Figs. 7(c) and 7(d). Two kinds of five-phase wave are oscil-
lated simultaneously. The input and output value of N1 to N5

are three and the one of N6 to N10 neurons are two. While the
loop number L is L 6= 5, the waves oscillated by this model
show five-phase.

4. Conclusion

In this study, we have proposed the structure model based
on the ring inhibitory neural network and studied synchro-
nization and oscillation phenomena. The polygonal structure
models can be split into three categories and oscillate differ-
ent waveform in each model. Synchronization phenomena
are confirmed by the simulation. The polygonal model can
not oscillate if the loop number L is even in the asymmetry
model. Here, the eigenvalue of non-oscillation model is in-
stability. Finding cause of this matter is a future work. The
multi-phase oscillation is confirmed on some polygonal mod-
els. It is expect that this phenomenon develops in large scale
networks. In addition, analyzing oscillations of the polygonal
model by the averaging method is desirable.
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