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ABSTRACT

This paper presents real polynomial form of multiple signal
characterization (MUSIC) with uniform linear array (ULA).
Firstly, the proposed method can reduce the computational
burden of spectral music by taking the place of a large num-
ber of search points by several real roots of polynomial.
Secondly, to transform Root-MUSIC algorithm into poly-
nomial with real coefficients, a higher order Root-MUSIC
whose variable is only defined on the unit upper semicircle is
presented. Furthermore, this paper also improves the results
obtained by J.Selva in 2005.

Index Terms— Parameter estimation, uniform linear ar-
ray (ULA), array signal processing

1. INTRODUCTION

The multiple signal characterization (MUSIC) algorithm for
direction finding [1] has been advanced for many years. To
a certain degree, the more search points one use, the more
accurate results one will obtain. The main computational bur-
den locate the process of spectral search. Thus, many effi-
cient methods are proposed to reduce the search complexity
of spectral music.

A called C-MUSIC recently appears in [2]. The approach
firstly divided the total interested observation field into sev-
eral equal segments. The virtual source positions can be gen-
erated by spectral search over one segment and the final esti-
mation values will be selected from these candidates. It shows
from Figs. 4 and 5 of [2] that the smaller number of segments
may result in the better estimation quality. However, it means
that C-MUSIC needs more search points to achieve a certain
accuracy.

To avoid the tremendous computation load of spectral
search, Root-MUSIC [3],[4] is proposed. The search-free
method has an improved resolution threshold. Taking advan-
tage of conformal transformation, the author of [5] translated
the Root-MUSIC into an univariate polynomial with real
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coefficients. Here, we have to point out that the interested
spatial frequency in Root-MUSIC lies in the interval [−π, π]
instead of [0, π]. Since only half of field-of-view is consid-
ered, the real coefficients polynomial in [5] has the same
degree with standard Root-MUSIC. In this paper, we improve
the result and give the real polynomial form of Root-MUSIC
in [−π, π]. The same mapping idea also appears in [6] to
estimate single target. The interested range is mapped into
real line by a tangent function, while the transformation func-
tion is not monotonic within target range. That is to say,
the target may not be uniquely determined from the inverse
transformation.

In this paper, a polynomial form with real coefficients
of spectral music is presented. Our method treats the whole
range of interest in uniform linear array. The complexity of
spectral music can be reduced by replacing a large number
of search points by real roots belonging to [−1, 1]. Further-
more, we propose a higher order Root-MUSIC whose vari-
able is only defined on the unit upper semicircle. The sim-
ilar Root-MUSIC then is transformed into real polynomial
form. The process of solving this polynomial just involves
real arithmetic [7]. Our method also can be used in unitary
Root-MUSIC [8] and unitary MUSIC [9].

2. DATA MODEL

Assume p far-field narrowband signals {sk} impinging on a
Uniform linear array (ULA) with M (M > p) sensors. The
output vector y(t) of the array at time t can be written as

y(t) = A(θ)s(t) + n(t), (1)

where s(t) is the vector of incident signals and n(t) is the
vector of additive noises. The so-called array steering matrix
and steering vector have the following form:

A(θ) = [a(θ1),a(θ2), · · · ,a(θp)] (2)

a(θi) =
[
1, ej

2π
λ d sin(θi), · · · , ej 2π

λ (M−1)d sin(θi)
]T

, (3)
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here, (·)T denotes transpose operator, d and λ stand for the
distance between two consecutive sensors and the identical
wavelength for all signals, respectively. The restriction of
Directions-of-arrival (DOAs) θ1, · · · , θp lie in the interval[−π

2 ,
π
2

]
for the purpose of eliminating the ambiguity of ULA

[10].
Next, we define spatial frequency ωi = 2π

λ d sin(θi).
Then, (3) becomes

a(ωi) =
[
1, ejωi , · · · , ej(M−1)ωi

]T
. (4)

For guaranteeing the uniqueness of a(ωi), i = 1, 2, · · · , p,
the spatial frequency ωi are in [−π, π] instead of [0, π] in [5].
In other words, the author in [5] only consider the half of the
DOA range of interest. Since the one-to-one correspondence
between ωi and θi, we only focus on the problem of estimat-
ing parameters ωi, i = 1, 2, · · · , p in this paper.

3. REAL POLYNOMIAL FORM OF SPECTRAL
MUSIC

Under the assumptions of the uncorrelated signals and the
white Gaussian noise, the array covariance matrix can be de-
composed into

R = E{y(t)yH(t)} = U sΛsU
H
s +UnΛnU

H
n . (5)

It is clear that the columns of A(θ) have the maximum pro-
jection on the signal subspace U s and are orthogonal to the
noise subspace Un. With this observation, two natural esti-
mation criterions are to find the local maxima or minima [1],
viz.

ω̂ = argmax
ω

f1(ω) = argmax
ω

aH(ω)U sU
H
s a(ω) (6)

or

ω̂ = argmin
ω

f2(ω) = argmin
ω

aH(ω)UnU
H
n a(ω). (7)

The total number of complex flops in (6) is Jp(2M + 1)
and the one in (7) is J(M − p)(2M +1) [11], where J (J �
M > p) is the number of spectral search points. Nevertheless,
the subspace decomposition in (5) costs O(M2p) complex
flops [12],[2]. We can conclude that the main computational
load of spectral MUSIC is the search steps. Consequently, it is
necessary to reduce the complexity of spectral search process.

Next, we will deduce the real polynomial form of spectral
music with the help of conformal transformation. By defining
a translation

z = ej(
ω
2 +π

2 ), (8)

the real point ω belonging to the domain [−π, π] can be
mapped to the unique complex point z belonging to the unit

upper semicircle. Furthermore, let us introduce a conformal
transformation

u = −j
z − j

z + j
. (9)

The above function is a one-to-one mapping that takes the
unit upper semicircle to the interval [−1, 1] of real line
[5],[6],[13]. Substituting (8) into (9), we get the relation-
ship between ω ∈ [−π, π] and u ∈ [−1, 1] as follows:

u = tan
(ω

4

)
. (10)

This is a monotonic function in [−π, π] and its range is
[−1, 1]. Thus, once the variable u is estimated, the unique
spatial frequency ω can be obtained by ω = 4arctanu.
For this purpose, the array vector response a(ω) must be
connected to u.

Using z = −j u−j
u+j and ejω = −z2 ( the two equations

can be easily obtained from (8) and (9) ), we get

[a(ω)]m = ej(m−1)ω = (−1)m−1z2(m−1)

=

(
u− j

u+ j

)2(m−1)

,m = 1, 2, · · · ,M. (11)

Multiplying by (u+ j)
2(M−1) (here, we note u �= −j ), the

above equation then becomes

(u+ j)
2(M−1)

[a(ω)]m = (u− j)
2(m−1)

(u+ j)
2(M−m)

= cm,2M−2u
2M−2 + · · ·+ cm,0

= cTmv(u),m = 1, 2, · · · ,M (12)

where the (2M − 1)× 1 coefficient vector cm = [cm,0, cm,1,
· · · , cm,2M−2]

T can be calculated by convolution opera-
tion [6],[14], v(u) = [1, u, · · · , u2M−2]T is unknown real
vector. Let us define an M × (2M − 1) matrix C =
[c1, c2, · · · , cM ]T , the array steering vector a(ω) can be
expressed

a(ω) = (u+ j)
2(1−M)

Cv(u). (13)

Meanwhile,a function’s differential in its local extremum
is zero. We can obtain [5]

∂f1(ω)

∂ω
= 2Re

{
aH(ω)WU sU

H
s a(ω)

}
= 0, (14)

where Re{} is a real operator and diagonal matrix W =
diag[0, j, · · · , j(M − 1)]. Applying (13),(14), vH(u) =
vT (u) and dropping the scalar gives

vT (u)Re
{
CHWU sU

H
s C

}
v(u) = 0. (15)

This is an univariate polynomial of degree 4(M−1) with real
coefficients. A similar polynomial with degree 2(M −1) was
also presented in [5] because the author only consider ω ∈
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[0, π]. However, our interesting targets are in ω ∈ [−π, π]
[10].

Observing the equation (15), we can find that the func-
tion is similar to the Root-MUSIC in [3]. The polynomial in
Root-MUSIC is 2(M − 1)-degree complex coefficients and
2(M − 1) complex roots have to be solved in complex do-
main. Nevertheless in (15), we only need to calculate the real
roots belonging to [−1, 1] in real domain. For real polyno-
mial, the process of solution can avoid all complex arithmetic
using Bairstow’s method [7]. In practice, finding roots of a
function usually involve iteration. The operation in (15) is
O(16M2) real flops per iteration, while the Root-MUSIC re-
quires O(24M2) real flops per iteration (1 complex flop = 6
real flops) even though polynomial have degree 2(M − 1).

4. REAL POLYNOMIAL BASED ROOT-MUSIC

In ULA, the Root-MUSIC always has more resolution com-
pared with spectral MUSIC [4]. Thus, it is interesting to look
for a real polynomial form of Root-MUSIC. Using z = ejω ,
ω ∈ [0, π] and (9), a real polynomial with degree 2(M − 1)
has been obtained in [5]. If we consider the whole domain
ω ∈ [−π, π], the conformal transformation equation (9) will
not exist in z = ejω , but exists in (8).

Thus, we can define the mth element of vector a(z) as
follows:

[a(z)]m = (−1)m−1z2(m−1),m = 1, 2, · · · ,M. (16)

The function f2(ω) in (7) then becomes

f2(z) = aH(z)UnU
H
n a(z) = 0. (17)

This is a polynomial of degree 4(M − 1) with complex coef-
ficients and the variable z is defined on the unit upper semi-
circle instead of the entire unit circle. Recalling (11)-(15) and
using a(z) = (u+ j)

2(1−M)
Cv(u) , we get

vT (u)CHUnU
H
n Cv(u) = 0. (18)

The roots of polynomial in (17) appear in reciprocal pairs(
z, 1

z∗
)

[10] and could not be on the unit circle because of the
effects of noise. The pair roots are related to u by conformal
transformation (9),

u1 = −j
z − j

z + j
, u2 = −j

1− jz∗

1 + jz∗
. (19)

Obviously, we have u1 = u∗
2. It is reasonable to conclude that

the roots in (18) also appear in conjugate pairs like (u, u∗). As
a consequence, the equation (18) is a real coefficients polyno-
mial, namely

vT (u)Re
{
CHUnU

H
n C

}
v(u) = 0. (20)

Next, we will analyze how to estimate the spatial fre-
quency ωi, i = 1, 2, · · · , p from the conjugate roots (ui, u

∗
i ) ,
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Fig. 1. MUSIC spectrum with 1000 points and Real poly-
nomial spectrum with 14 points. The number of snapshots
N = 100, SNR = 5dB

i = 1, 2, · · · , 2(M − 1) of above polynomial. Assuming
z = a+ jb, b ≥ 0, the equation (9) becomes

u = −j
a+ jb− j

a+ jb+ j
=

−2a− j
(
a2 + b2 − 1

)

a2 + (b+ 1)
2 . (21)

When the roots z in (17) are close to the unit circle, the imag-
inary part of u must tend to zero. Therefore, p real parts of
ui can be picked up through comparing the absolution value
of imaginary part of ui, i = 1, 2, · · · , 2(M − 1). The spa-
tial frequency will be given by ωi = 4arctan [Re (ui)] , i =
1, 2, · · · , p.

Note that, although the polynomial in (20) have 4(M−1)-
degree, its coefficients are real and roots appear in conjugate
pairs. Thus, we only need to solve 2(M−1) roots. The whole
process just involve real arithmetic.

5. EXPERIMENTS

In this section, two examples were conducted by computer
simulation. In all scenarios, two equal-power uncorrelated
signals are considered and a ULA have 9 sensors. Meanwhile,
we set spatial frequency ω1 = −0.3, ω2 = 1.2. Here, ω1 can
not be solved in [5].

Example 1: Performance of real polynomial based on
spectral MUSIC

We firstly should calculate ωi = 4arctanui, i =
1, 2, . . . , Q (ui ∈ [−1, 1] can be obtained by solving the
real polynomial (15)). Then, evaluating the extremum
of (6) at ωi, i = 1, 2, · · · , Q can pick up the final value
ω̂k, k = 1, 2, · · · , p. The computational complexity of the
above process is O(8M2 + 16QM2) + 6Qp(2M + 1) real
flops [6].
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Fig. 2. RMSE of spatial frequency ω=-0.3. The number of
snapshots N = 100

In this example, 14 real roots of the polynomial (15) lie in
the domain [−1, 1]. Figure. 1 shows that the proposed method
can capture the extremal point. In addition, our method re-
quires about 21984 real flops, while the spectral MUSIC re-
quires 36000 complex flops. In other words, the computa-
tion load of real polynomial algorithm is roughly equal to the
spectral MUSIC with 100 search points.

Example 2: Performance of real polynomial based on
Root-MUSIC

In the second case, we mainly test the validity of real co-
efficients polynomial (20). For this purpose, let us introduce
the imaginary part of matrix H = CHUnU

H
n C. After sim-

ple derivation, we obtain

vT (u) {Re {H}+ Im {H}}v(u) = 0. (22)

This approach using (22) named real-imag polynomial and
was indicated by red line in Figure. 2. It is worth pointing
out that (20) and (22) give the same results. That is to say,
the coefficients of polynomial (18) are real. Meanwhile, the
behavior of our method have been improved a little at lower
signal-to-noise ratio (SNR) than Root-MUSIC [3].

6. CONCLUSIONS

An univariate polynomial with real coefficients is presented
for reducing the search points in spectral MUSIC. The real
roots belonging to [−1, 1] only need to be solved and the pro-
cess of solution can avoid all complex arithmetic. On the
other hand, for improving the results in [5], we propose a sim-
ilar Root-MUSIC whose variable is defined on the unit upper
semicircle. Then, the complex equation is also transformed
into real polynomial form.
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