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Abstract— In this study, we investigate synchronization phe-
nomena in coupled chaotic circuits with different coupling
strength when chaotic circuits are arranged irregularly in one
dimensional array. Three groups are composed in this circuit
system and each group includes some chaotic circuits. The
coupling strength corresponds to the distance between the chaotic
circuits. We observe several types of clustering patterns when the
coupling strength is fixed to appropriate value.

I. INTRODUCTION

Synchronization is one of the basic phenomena and it can
be observed everywhere in our living life [1]-[5]. Therefore,
studies on synchronization phenomena have investigated in the
various fields. In particular, we are interested in synchroniza-
tion phenomena observed in electronic circuits. We consider
that there are many real physical phenomena exhibiting by
coupled chaotic circuits, and it is important to investigate
synchronization phenomena observed from coupled chaotic
circuits for future engineering applications.

Recently, we have investigated synchronization phenomena
observed from complex networks of the coupled chaotic cir-
cuits [6], [7]. The chaotic circuits are placed on 2-dimensional
space and the coupled parameters depend on the distance
between the circuits. We have observed interesting clustering
phenomena from this proposed system by computer simula-
tions and circuit experimental results. In order to understand
the obtained results in detail, we need to consider more simple
circuit system.

In our previous study, we have investigated synchronization
phenomena of an array of the coupled chaotic circuits [8]. In
this circuit system, the chaotic circuits are arranged in two
groups. By using computer simulations, we have confirmed
chaos synchronization when the number of the chaotic circuits
of two groups is same. While, the breakdown of chaos
synchronization is occurred by changing from the symmetric
arrangement to the asymmetric system which the number of
the chaotic circuits of two groups is different. We consider that
it is interesting to change the synchronization states depending
on the arrangement method of the circuits.

In this study, we expand the circuit system to more complex
system. Three groups are composed in this circuit system and
each group includes some chaotic circuits. We focus on the

phase difference between intergroup and intragroup circuits.
By using computer simulations, we observe several types of
synchronization states when the coupling strength is fixed to
appropriate value. Furthermore, we discuss the relationship
between the obtained synchronization states and clustering
phenomena.

II. CIRCUIT MODEL

Figure 1 shows the chaotic circuit called Nishio-Inaba cir-
cuit, investigated in [9]-[11]. The circuit consists of a negative
resistance, a nonlinear resistance consisting of two diodes, a
capacitor and two inductors.

Fig. 1. Nishio-Inaba chaotic circuit.
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Fig. 2. Arrangement of chaotic circuits with globally coupling as
one dimensional array.

In this study, we consider that the chaotic circuits are
arranged in one dimensional array as shown in Fig. 2. All
chaotic circuits are connected to each other by resistors.
Furthermore, the value of the coupling strength depends on
the distance btween the circuits.
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We obtain the normalized circuit equations.
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In this equation, i in the equation represents the circuit itself,
and j indicates the coupling with other circuits. The parameter
γij represents the coupling strength between the circuits. The
value of γij reflects the distance between the circuits in an
inverse way, described by the following equation:

γij =
g

(dij)2
. (3)

dij denotes the Euclidean distance between the i − th circuit
and the j−th circuit. The parameter g is a weighting or scaling
parameter that determines the coupling strengths.

III. BASIC SYNCHRONIZATION PHENOMENA

First, we explain the basic synchronization phenomena
when the chaotic circuits are coupled at irregular intervals.
The two types arrangements of chaotic circuits (symmetric and
asymmetric models) are considered as shown in Fig 3. In these
circuit models, two groups are arranged in one dimensional
space. The nearest distance between the chaotic circuits within
the group is set to din = 0.01. The distance between the
intergroup circuits is set to dout = 0.1. In this simulation, we
set the scaling parameter to g = 1.0× 10−5 and the coupling
strength between two circuits is determined by Eq. (3).

Figure 4 shows the simulation results of the symmetric
system (Fig. 3 (a)). The chaotic circuits within the group are
synchronized with in-phase state as shown in Fig. 4 (a). Also,
the in-phase synchronization is observed from the intergroup
circuits (see Fig. 4 (b)). Similarly, Fig. 5 shows the results of
the phase differences between the chaotic circuits of the asym-
metric system (Fig. 3 (b)). In this case, the asynchronization
can be observed from the intergroup circuits (see Fig. 5 (b)).

From these results, all chaotic circuits are synchronized
when the chaotic circuits are coupled by symmetry. However,
the case of that the chaotic circuits are coupled by asymmetry,

asynchronous phenomena can be observed from the adjacent
chaotic circuits of the intergroup circuits. We consider that it
is interesting to change the synchronization states depending
on the arrangement method of the chaotic circuits.
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Fig. 3. Arrangement of chaotic circuits with two groups.

(a) Group1-Group1. (b) Group1-Group2.

Fig. 4. Phase difference of intragroup and intergroup circuits for
symmetric arrangement. ((a): 9.44◦, (b): 28.19◦)

(a) Group1-Group1. (b) Group1-Group2.

Fig. 5. Phase difference of intragroup and intergroup circuits for
asymmetric arrangement. ((a): 9.54◦, (b): 90.00◦)

IV. SYNCHRONIZATION PHENOMENA

In this section, several types of the circuit arrangement are
considered as follows.

A. Synchronization phenomena I

Here, we investigate synchronization phenomena when the
chaotic circuits are arranged in three groups. The two types
arrangements of chaotic circuits (symmetric and asymmetric
models) are considered as shown in Fig 6. In this circuit
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(b) Asymmetric system (4-9-x network).

Fig. 6. Arrangement of chaotic circuit with three groups.

system, the distance parameters are fixed with din = 0.01 and
dout = 0.1, and the coupling strength is set to g = 1.0×10−5.
For the asymmetric model, the number of the chaotic circuits
in group3 is changed from 1 to 3.

Figures 7-10 show the simulation results of the phase differ-
ence of the intergroup circuits. In the case of symmetric 4-9-4
network, all intergroup circuits are synchronized with in-phase
state as shown in Fig. 7. Figure 8 shows the phase differences
of asymmetric 4-9-3 network. The chaotic circuits between
group1 and group3 are synchronized with in-phase. While, the
other intergroup circuits are not synchronized. By decreasing
the number of chaotic circuits in group3, the different type
of synchronization is observed. In the case of 4-9-2 and 4-9-
1 networks, the chaotic circuits between group1 and group2
are synchronized with in-phase state. Asynchronization can be
obtained from the other intergroup circuits (see Figs. 9, 10).

(a) Group1-Group2. (b) Group2-Group3. (c) Group3-Group1.

Fig. 7. Phase difference of intergroup circuits for 4-9-4 network.
((a): 23.66◦, (b): 24.48◦, (c): 14.26◦)

(a) Group1-Group2. (b) Group2-Group3. (c) Group3-Group1.

Fig. 8. Phase difference of intergroup circuits for 4-9-3 network.
((a): 40.13◦, (b): 58.39◦, (c): 17.57◦)

(a) Group1-Group2. (b) Group2-Group3. (c) Group3-Group1.

Fig. 9. Phase difference of intergroup circuits for 4-9-2 network.
((a): 27.66◦, (b): 90.00◦, (c): 62.77◦)

(a) Group1-Group2. (b) Group2-Group3. (c) Group3-Group1.

Fig. 10. Phase difference of intergroup circuits for 4-9-1 network.
((a): 29.16◦, (b): 90.00◦, (c): 90.00◦)

Next, we consider the relationship between the obtained
synchronization states and clustering phenomena. We define
the synchronized circuits as one cluster. Table I summarizes
the clustering phenomena for all types of the networks. We
observe one cluster in the symmetric system. In the case of
the asymmetric system, two clusters are observed. From these
results, we confirm that several types of clustering phenomena
can be observed from the asymmetric circuit systems.

B. Synchronization phenomena II

Next, we investigate the synchronization state of symmetric
4-9-4 network when the coupling strength is changed. Figure
11 shows the simulation results of the phase differences.
When the coupling strength is small value, we confirm the
asynchrous state for whole circuit system. First, the phase
difference of the intergroup circuits decreases around g =



TABLE I
SUMMARY OF CLUSTERING PHENOMENA.

Network Clustering number Clustering type
4-9-4 1 cluster (groups 1-2-3)
4-9-3 2 clusters (groups 1-3), (group 2)
4-9-2 2 clusters (groups 1-2), (group 3)
4-9-2 2 clusters (groups 1-2), (group 3)

1.0× 10−6. At this region, the synchronization of the chaotic
circuits within the group is occurred. Next, the phase dif-
ference between the group1 and the group3 shows in-phase
state. However, the chaotic circuits between the other groups
are not synchronized (see Fig. 12). Finally, we confirm fully
synchronization state around g = 1.0 × 10−5.

Table II summarizes the relationship between the obtained
synchronization state and the clustering phenomena. We con-
firm that the several types of clustering phenomena can be
obtained by setting the coupling strength.
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Fig. 11. Average of phase difference with coupling strength.

(a) Group1-Group1. (b) Group2-Group2. (c) Group3-Group3.

(d) Group1-Group2. (e) Group2-Group3. (f) Group3-Group1.

Fig. 12. Synchronization state of two clusters. ((a): 10.09◦, (b): 9.37◦,
(c): 9.96◦, (d): 90.00◦, (e): 90.00◦, (f): 29.68◦)

g

1e-8 : 0.6e-7

0.8e-7 : 0.3e-6

0.4e-6 : 0.9e-6

1e-5 : 0.3e-4

Synchronization States

Fully asynchronization

Synchronization of chaotic circuits in same group

Synchronization between Group1 and Group3

Fully synchronization

4       9       4

4       9       4

4       9       4

TABLE II: SUMMARY OF SYNCHRONIZATION STATE.

4       9       4

Clustering type

V. CONCLUSION

In this study, we have investigated synchronization phe-
nomena in coupled chaotic circuits with different coupling
strength when chaotic circuits are arranged irregularly in
one dimensional array. Three groups are composed in this
circuit system and each group includes some chaotic circuits.
The coupling strength corresponds to the distance between
the chaotic circuits. We have observed several types of syn-
chronization states when the coupling strength is fixed to
appropriate value.
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