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Abstract—In a biological system, a glia and a neuronis over an excitation threshold of the glia, the glia generates
are correlated each other. These cells closely relate atite pulse. The pulse is input to the threshold of the near-
compose a higher brain function. In this study, we proposest neuron in both layers. The glias shares the outputs of
a Multi-Layer Perceptron (MLP) with local glia connec-part of neurons with the neighboring neurons, thus the ex-
tion. We connect the glia to the neurons in two hiddeneitation timing of glias becomes similar to neighborhood.
layer. The glias receive the outputs of the connecting netoreover, the excited glia decreases the excitation thresh-
rons and the glias sum the neuron outputs. When thads of the neighboring glias. By these influences, the tim-
summed value is over the excitation threshold of the gliang of the pulse generation is similar to each other. We
the glia generates a pulse. After that, the pulse is inpebnsider that the glia gives the position relationships to the
to the neuron threshold. Moreover, the excitation of thaeurons. In the same layer, the timing the pulse generation
glia decreases the excitation threshold of neighboring gliass. different little by little. Between the first-hidden-layer
Thus, the neighboring glias are excited at a similar timingand the second-hidden-layer, the neurons have the same
We consider that the position relationship between the gligulse in the same positions. By the simulations, we con-
and the neuron is important to the MLP performance. Bfirm that a solving ability of the proposed MLP.
simulations, we confirm the influence of the glia for the

MLP performance. 2. Proposed method

1. Introduction The MLP is a famous feed forward neural networks. It
is applied to a pattern classification, a pattern recognition,
The glia is one of nervous cells in the brain. This cell was data mining, and so on. The output of network is de-
considered to the static cell because the glia works in theded by the weights of the connections of the neurons. In
brain was not observed. However, some researchers digneral, we use a Back Propagation (BP) algorithm for de-
covered that the glia has important functions for the braitermining weights [7]. In the standard MLP, the neurons do
[1]. The glia can transmit signals to the neurons and oth&ot have the connections in the same group, moreover the
glias by using various ions such as a glutamate acid, areurons connect with every neuron in the forward-layer.
adenosine triphosphate, a GABA, a°Caand so on [2][3]. Thus, the connections of the neurons are equivalent each
Thus, the glia and the neuron are closely related each othether.
Currently, we consider that the glia is the important cell In this study, we propose the MLP with local glia con-
for the brain functions. In these ions, we notice thé'Ca nection which is inspired from the biological characteris-
because the glia generates the change of thé @mcen- tics of glia. The proposed model is shown in Fig. 1. We
tration depending on the neurons. The change of tHé Caconnect the glias to the neurons in the first-hidden-layer
concentration is propagated to the neighboring glias, morand the second-hidden-layer. One glia is connected with
over it influences a membrane potential of neurons [4]-[6three neurons in each layer. The glias receive the out-
Thus, the glia and the neuron are closely related by the ionsuts from the connecting neurons and sum these value.
From these characteristics, we have proposed the applid&hen the summed value is over the excitation threshold
tions of the relationships between the neuron and the gl@ glia, the glia generates the pulse. The pulse is input to
to an artificial neural network. the center neurons in the connecting neurons. The pulse
In this study, we propose the Multi-Layer Perceptrornnfluence to the threshold of neuron because the glia in-
(MLP) with local glia connection which is inspired from fluence to the membrane potential in the biological sys-
the characteristics of the biological glia. This MLP is comtem. Thus, the neurons in the first-hidden-layer and the
posed of four layers. We connect the glias to the neurorsecond-hidden-layer have same pulse. Moreover, the ex-
in two hidden-layer. One glia is connected with the neigheited glia decreases the excitation threshold of neighboring
boring three neurons in two hidden-layer. In this networkglia. The glias shared a part of neuron outputs as shown
the glias is connected with same two neurons for the neigin Fig 1 and the glia directly influences to the excitation
boring glias. The glia receives the output of the connectintipreshold of neighboring glia. Thus, the pulse generation
neurons and charges these outputs. When the charged vgtagtern becomes similar in the neighborhood glias. By the
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pulses which have the position relationships each other, tRe2. Updating rule of neuron
neuron works obtain the position relationships in the both

hidden-layer. The neuron is the multi-input and the single output.

The neuron receives the outputs of neurons in forward
layer. The standard updating rule of neuron is described

by Eq. (1).

yt+1)=f (Z Wi (0X)(0) 6 (t)], (1)
=1

wherey is an output of the neuronw is a weight of the
connectionx is an input of the neuron, ards a threshold

of the neuron. In this equatiomny andé are tuned by the
BP algorithm. Thus, if the network is trapped into local
minimum, it cannot escape out from there. Next, | show
a proposed updating rule of the neuron. We add the glial
effect to the threshold of neuron. This updating rule is used
to the neurons in hidden layer. It is described by Eq. (2).

Neuron

Figure 1: Proposed MLP.

Vitt+1) = £ > wiOx® - 60 +an®|. ()
=1

wherea is a weight of the glial ffect andy is a pulse of the
2.1. Time flow of glia excitation glia. We can control the glialféect by the change af. In
this equation, the weight of connection and the threshold
We show the detail of the glia works in Fig. 2. In this fig-are learned by the BP algorithm as same as the standard
ure, we only show the neurons in one hidden-layer. Actuipdating rule of neuron.
ally, the glias are connected with the neurons in two hidden- Egs. (1) and (2) are used a sigmoidal function to an acti-
layer. The glias receives the outputs from two or three newating function which is described by Eq. (3).
rons. The neighboring glia receives the output from same 1
neurons. At£2, one glia is excited. Then, the glia gener- f(a = 1rea 3)
ates the pulse and it input to the nearest neurons. Moreover, . .
N . ; . g wherea is an inner state.
this glia influence to the neighboring glias. This influence
decreases the excitation threshold of the glias. By this ir§.3_ Glia
fluence, the neighboring glias are excited 8.t These
glias generates the pulses and input to the nearest neuronslhe glia is one of nervous cells. This cell transmits sig-
The excitation of the glia is propagated into the networknal by using C&. The C&" influences to the state of the
Thus, the generations of pulses arfatient little by little.  neighboring glia and the membrane potential. In this study,
the glia is excited by the neurons’ outputs. One glia is con-
nected with three neurons in each hidden-layer. The glia
sums the received neurons’ outputs and holds this value
which is described by Eq. (4).
1 1+1
g0 =a-D+3 > {HiO+Ha© - 20} (@
3 i=i-1
whereg is a hold value of the gliaHy; is an output of
the connecting neurons in the first-hidden-layer, Bads
an output of the connecting neurons in the second-hidden-
layer. Wheng is over the excitation threshold of the glia,
the glia generates the pulggcan obtain the positive value
and the negative value. dfis positive value, the glia gener-
ates the positive pulse. On the other hand, the glia generates
the negative pulse. The excitation condition of the glia is
defined in Eq. (5).

Figure 2: The generation and propagation of gliéet. L (@M >65N1i>6)
git+1)=1 -1 (@) <-6gN1i>6) , (5)
wi(t), else
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wherey is a glia output;y is an attenuated parameté,

is an excitation threshold of the glia,is a local time of os
the glia, andy; is a time length of a period of inactivity. 06 =
The generation pulse is attenuated in an exponential fash- =
ion. The glia has the period of inactivity. The period of '
inactivity starts when the glia generates the pulse. During
this period, the glia cannot have the response. In the pro- o
posed methodj is decreased in the neighborhoods of the
excited glia.

0.2
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(b)

) ) Figure 3: Two-spiral problem. (a) Learning spiral points.
3. Simulations (b) Ideal result of TSP.

In this section, we show the performance of the proposed
MLP. We compare three kinds of MLPs which are; maximum error, the proposed MLP is the best of all. From
this result, we can say that the proposed method gives the

(1) The standard MLP. energy for escaping out from the local minimum. In our

(2) The MLP with random noise. method, the timing of the pulse generation is similar to each
other. Thus, the pulses locally give the large energy. How-
(3) The MLP with local glia connection. ever, the glias have period of inactivity. During this period,

the pulse is not generated. The MLP locally increases the

th h it often t dint local mini %’?ror, however it can rapidly converge the error during pe-
e error, however it often trapped into a local minimum,; . inactivity.

The MLP with random noise has an uniformed random
noise in the hidden-layer neurons. Every MLP is composed

of four layers. The number of neurons in each layer are 2- Table 1: Learning performance.

10-10-1. We obtain the statistic result from 100 trials in Average Minimum Maximum  Std. Dev.
each MLP. One trial has 5000000 iterations. We use the (1) 0.01384 0.00001 0.08687 0.01959
Mean Square Error (MSE) for an error index. The MSE is (2) 0.01220 0.00000 0.09470 0.01772
described by Eg. (6). (3) 0.00883 0.00001 0.07979 0.01463

1 N
MSE= N Z(T“ - 0%, 6) Figure 4 is an example of learning curves. The standard
n=1 MLP early converges the error. The oscillation of curve
whereN is a number of learning datd, is a target value, Of MLP with random noise becomes a large. The random
andQOis an output of MLP. From 100 trials, we obtain fournoise helps for escaping out from the local minimum, how-
kinds of the results which are an average of error, a mingver the noise inhibits the convergence error. The proposed
mum of error, a maximum error, and a standard deviationMLP rapidly decreases the error. When decreasing error
In this simulation, we use a Two-Spiral Problem (TSPPecomes slower, the oscillation happens. Moreover, the er-
for a simulation task. The TSP is a famous task for théor reducing is continued.
artificial neural network because this task cannot be a linear

separation [8][9]. The TSP is composed of twdfelient { [
spirals. We input the coordinates of the spirals to the MLP ~_ — Standard
and the MLP learns the corresponding classification. The 0.1 A"\\ “'Ea“d"md 1
learning spirals and the ideal result are shown in Fig. 3. The Y~-<L ropose
spirals are composed of the 194 points. The MLP learns the 0.01 \ AN han
194 data sets. = T T Yoy T — 1
2 ‘1 h . h
- 0.001 Wil g
3.1. Learning performance "‘"‘"‘:\,u
Firstly, we show the learning performance in Table 1. 0.0001 A A "
The minimum error becomes the same result for every
MLP. However, the average error of the standard MLP is \ \
worst of all. B it is often falls into the local mini-  *"**"! '
orst or all. because 1t is often 1alls into the local mini- 0 100000 200000 300000 400000 500000
mum. The random noise improves the performance than Iteration
the standard MLP. In this case, the maximum error be- _ _
comes high. We consider that the random noise sometimes Figure 4: Examples of learning curves.

inhibits the learning. In the average of the error and the
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3.2. Classification performance

(3]

Finally, we show the classification performance in Ta-
ble 2. The standard MLP is the worst of all. In this case,
the MLP with random noise has a better performance tharj4]
the proposed MLP. The MLP needs the generalization ca-
pability. In the proposed MLP, the pulse locally influences
to the learning. During the period of inactivity, this learning
becomes similar to the standard MLP. Thus, the propose
MLP lost the generalization capability than the MLP with
random noise.

(6]

Table 2: Classification performance.

Average Minimum Maximum  Std. Dev.
(1) 0.14629 0.09879 0.22581 0.02469 7]
(2) 0.12915 0.08278 0.18220 0.02132
(3) 0.13111 0.08725 0.18420 0.02008

(8]

4. Conclusions

In this study, we have proposed the MLP with local glia
connection. The glias are connected with the neurons in the
first-hidden-layer and the second-hidden-layer. The stan-
dard MLP does not have the relationships in the same layer,
moreover the connections of the neurons are equivalence
in the diferent layer. In our method, the glia generates
the pulse according to the outputs of the connecting neu-
rons. The glias share the outputs of part of neurons each
other. The pulse is input to the neuron threshold. More-
over, the excited glia decreases the excitation threshold of
neighboring glia. We consider that the sharing neurons’
outputs and decreasing the excitation threshold gives the
position relationships. By solving the TSP, we confirm that
the proposed method iffigiency to the MLP performance.
Moreover, we can see that the proposed MLP has a high
convergence performance and a classification performance.
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