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Abstract—In a biological system, a glia and a neuron
are correlated each other. These cells closely relate and
compose a higher brain function. In this study, we propose
a Multi-Layer Perceptron (MLP) with local glia connec-
tion. We connect the glia to the neurons in two hidden-
layer. The glias receive the outputs of the connecting neu-
rons and the glias sum the neuron outputs. When the
summed value is over the excitation threshold of the glia,
the glia generates a pulse. After that, the pulse is input
to the neuron threshold. Moreover, the excitation of the
glia decreases the excitation threshold of neighboring glias.
Thus, the neighboring glias are excited at a similar timing.
We consider that the position relationship between the glia
and the neuron is important to the MLP performance. By
simulations, we confirm the influence of the glia for the
MLP performance.

1. Introduction

The glia is one of nervous cells in the brain. This cell was
considered to the static cell because the glia works in the
brain was not observed. However, some researchers dis-
covered that the glia has important functions for the brain
[1]. The glia can transmit signals to the neurons and other
glias by using various ions such as a glutamate acid, an
adenosine triphosphate, a GABA, a Ca2+, and so on [2][3].
Thus, the glia and the neuron are closely related each other.
Currently, we consider that the glia is the important cell
for the brain functions. In these ions, we notice the Ca2+,
because the glia generates the change of the Ca2+ concen-
tration depending on the neurons. The change of the Ca2+

concentration is propagated to the neighboring glias, more-
over it influences a membrane potential of neurons [4]-[6].
Thus, the glia and the neuron are closely related by the ions.
From these characteristics, we have proposed the applica-
tions of the relationships between the neuron and the glia
to an artificial neural network.

In this study, we propose the Multi-Layer Perceptron
(MLP) with local glia connection which is inspired from
the characteristics of the biological glia. This MLP is com-
posed of four layers. We connect the glias to the neurons
in two hidden-layer. One glia is connected with the neigh-
boring three neurons in two hidden-layer. In this network,
the glias is connected with same two neurons for the neigh-
boring glias. The glia receives the output of the connecting
neurons and charges these outputs. When the charged value

is over an excitation threshold of the glia, the glia generates
the pulse. The pulse is input to the threshold of the near-
est neuron in both layers. The glias shares the outputs of
part of neurons with the neighboring neurons, thus the ex-
citation timing of glias becomes similar to neighborhood.
Moreover, the excited glia decreases the excitation thresh-
olds of the neighboring glias. By these influences, the tim-
ing of the pulse generation is similar to each other. We
consider that the glia gives the position relationships to the
neurons. In the same layer, the timing the pulse generation
is different little by little. Between the first-hidden-layer
and the second-hidden-layer, the neurons have the same
pulse in the same positions. By the simulations, we con-
firm that a solving ability of the proposed MLP.

2. Proposed method

The MLP is a famous feed forward neural networks. It
is applied to a pattern classification, a pattern recognition,
a data mining, and so on. The output of network is de-
cided by the weights of the connections of the neurons. In
general, we use a Back Propagation (BP) algorithm for de-
termining weights [7]. In the standard MLP, the neurons do
not have the connections in the same group, moreover the
neurons connect with every neuron in the forward-layer.
Thus, the connections of the neurons are equivalent each
other.

In this study, we propose the MLP with local glia con-
nection which is inspired from the biological characteris-
tics of glia. The proposed model is shown in Fig. 1. We
connect the glias to the neurons in the first-hidden-layer
and the second-hidden-layer. One glia is connected with
three neurons in each layer. The glias receive the out-
puts from the connecting neurons and sum these value.
When the summed value is over the excitation threshold
of glia, the glia generates the pulse. The pulse is input to
the center neurons in the connecting neurons. The pulse
influence to the threshold of neuron because the glia in-
fluence to the membrane potential in the biological sys-
tem. Thus, the neurons in the first-hidden-layer and the
second-hidden-layer have same pulse. Moreover, the ex-
cited glia decreases the excitation threshold of neighboring
glia. The glias shared a part of neuron outputs as shown
in Fig 1 and the glia directly influences to the excitation
threshold of neighboring glia. Thus, the pulse generation
pattern becomes similar in the neighborhood glias. By the
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pulses which have the position relationships each other, the
neuron works obtain the position relationships in the both
hidden-layer.

Glia

Neuron

Figure 1: Proposed MLP.

2.1. Time flow of glia excitation

We show the detail of the glia works in Fig. 2. In this fig-
ure, we only show the neurons in one hidden-layer. Actu-
ally, the glias are connected with the neurons in two hidden-
layer. The glias receives the outputs from two or three neu-
rons. The neighboring glia receives the output from same
neurons. At t=2, one glia is excited. Then, the glia gener-
ates the pulse and it input to the nearest neurons. Moreover,
this glia influence to the neighboring glias. This influence
decreases the excitation threshold of the glias. By this in-
fluence, the neighboring glias are excited at t=3. These
glias generates the pulses and input to the nearest neurons.
The excitation of the glia is propagated into the network.
Thus, the generations of pulses are different little by little.

t=1

t=2

t=3

: Unexcited glia : Excited glia

Figure 2: The generation and propagation of glial effect.

2.2. Updating rule of neuron

The neuron is the multi-input and the single output.
The neuron receives the outputs of neurons in forward
layer. The standard updating rule of neuron is described
by Eq. (1).

yi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t)

 , (1)

wherey is an output of the neuron,w is a weight of the
connection,x is an input of the neuron, andθ is a threshold
of the neuron. In this equation,w andθ are tuned by the
BP algorithm. Thus, if the network is trapped into local
minimum, it cannot escape out from there. Next, I show
a proposed updating rule of the neuron. We add the glial
effect to the threshold of neuron. This updating rule is used
to the neurons in hidden layer. It is described by Eq. (2).

yi(t + 1) = f

 n∑
j=1

wi j (t)x j(t) − θi(t) + αψi(t)

 , (2)

whereα is a weight of the glial effect andψ is a pulse of the
glia. We can control the glial effect by the change ofα. In
this equation, the weight of connection and the threshold
are learned by the BP algorithm as same as the standard
updating rule of neuron.

Eqs. (1) and (2) are used a sigmoidal function to an acti-
vating function which is described by Eq. (3).

f (a) =
1

1+ e−a
(3)

wherea is an inner state.

2.3. Glia

The glia is one of nervous cells. This cell transmits sig-
nal by using Ca2+. The Ca2+ influences to the state of the
neighboring glia and the membrane potential. In this study,
the glia is excited by the neurons’ outputs. One glia is con-
nected with three neurons in each hidden-layer. The glia
sums the received neurons’ outputs and holds this value
which is described by Eq. (4).

gi(t) = gi(t − 1)+
1
3

1+1∑
i=i−1

{
H1i(t) + H2i(t) − 1.0

}
, (4)

whereg is a hold value of the glia,H1i is an output of
the connecting neurons in the first-hidden-layer, andH2i is
an output of the connecting neurons in the second-hidden-
layer. Wheng is over the excitation threshold of the glia,
the glia generates the pulse.g can obtain the positive value
and the negative value. Ifg is positive value, the glia gener-
ates the positive pulse. On the other hand, the glia generates
the negative pulse. The excitation condition of the glia is
defined in Eq. (5).

ψi(t + 1) =

 1, (gi(t) > θg ∩ I i > θt)
−1, (gi(t) < −θg ∩ I i > θt)
γψi(t), else,

, (5)
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whereψ is a glia output,γ is an attenuated parameter,θg

is an excitation threshold of the glia,I is a local time of
the glia, andθt is a time length of a period of inactivity.
The generation pulse is attenuated in an exponential fash-
ion. The glia has the period of inactivity. The period of
inactivity starts when the glia generates the pulse. During
this period, the glia cannot have the response. In the pro-
posed method,θ is decreased in the neighborhoods of the
excited glia.

3. Simulations

In this section, we show the performance of the proposed
MLP. We compare three kinds of MLPs which are;

(1) The standard MLP.

(2) The MLP with random noise.

(3) The MLP with local glia connection.

The standard MLP is a basic model. It can early converges
the error, however it often trapped into a local minimum.
The MLP with random noise has an uniformed random
noise in the hidden-layer neurons. Every MLP is composed
of four layers. The number of neurons in each layer are 2-
10-10-1. We obtain the statistic result from 100 trials in
each MLP. One trial has 5000000 iterations. We use the
Mean Square Error (MSE) for an error index. The MSE is
described by Eq. (6).

MS E=
1
N

N∑
n=1

(Tn −On)2, (6)

whereN is a number of learning data,T is a target value,
andO is an output of MLP. From 100 trials, we obtain four
kinds of the results which are an average of error, a mini-
mum of error, a maximum error, and a standard deviation.

In this simulation, we use a Two-Spiral Problem (TSP)
for a simulation task. The TSP is a famous task for the
artificial neural network because this task cannot be a linear
separation [8][9]. The TSP is composed of two different
spirals. We input the coordinates of the spirals to the MLP
and the MLP learns the corresponding classification. The
learning spirals and the ideal result are shown in Fig. 3. The
spirals are composed of the 194 points. The MLP learns the
194 data sets.

3.1. Learning performance

Firstly, we show the learning performance in Table 1.
The minimum error becomes the same result for every
MLP. However, the average error of the standard MLP is
worst of all. Because it is often falls into the local mini-
mum. The random noise improves the performance than
the standard MLP. In this case, the maximum error be-
comes high. We consider that the random noise sometimes
inhibits the learning. In the average of the error and the
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Figure 3: Two-spiral problem. (a) Learning spiral points.
(b) Ideal result of TSP.

maximum error, the proposed MLP is the best of all. From
this result, we can say that the proposed method gives the
energy for escaping out from the local minimum. In our
method, the timing of the pulse generation is similar to each
other. Thus, the pulses locally give the large energy. How-
ever, the glias have period of inactivity. During this period,
the pulse is not generated. The MLP locally increases the
error, however it can rapidly converge the error during pe-
riod of inactivity.

Table 1: Learning performance.
Average Minimum Maximum Std. Dev.

(1) 0.01384 0.00001 0.08687 0.01959
(2) 0.01220 0.00000 0.09470 0.01772
(3) 0.00883 0.00001 0.07979 0.01463

Figure 4 is an example of learning curves. The standard
MLP early converges the error. The oscillation of curve
of MLP with random noise becomes a large. The random
noise helps for escaping out from the local minimum, how-
ever the noise inhibits the convergence error. The proposed
MLP rapidly decreases the error. When decreasing error
becomes slower, the oscillation happens. Moreover, the er-
ror reducing is continued.
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Figure 4: Examples of learning curves.
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3.2. Classification performance

Finally, we show the classification performance in Ta-
ble 2. The standard MLP is the worst of all. In this case,
the MLP with random noise has a better performance than
the proposed MLP. The MLP needs the generalization ca-
pability. In the proposed MLP, the pulse locally influences
to the learning. During the period of inactivity, this learning
becomes similar to the standard MLP. Thus, the proposed
MLP lost the generalization capability than the MLP with
random noise.

Table 2: Classification performance.
Average Minimum Maximum Std. Dev.

(1) 0.14629 0.09879 0.22581 0.02469
(2) 0.12915 0.08278 0.18220 0.02132
(3) 0.13111 0.08725 0.18420 0.02008

4. Conclusions

In this study, we have proposed the MLP with local glia
connection. The glias are connected with the neurons in the
first-hidden-layer and the second-hidden-layer. The stan-
dard MLP does not have the relationships in the same layer,
moreover the connections of the neurons are equivalence
in the different layer. In our method, the glia generates
the pulse according to the outputs of the connecting neu-
rons. The glias share the outputs of part of neurons each
other. The pulse is input to the neuron threshold. More-
over, the excited glia decreases the excitation threshold of
neighboring glia. We consider that the sharing neurons’
outputs and decreasing the excitation threshold gives the
position relationships. By solving the TSP, we confirm that
the proposed method is efficiency to the MLP performance.
Moreover, we can see that the proposed MLP has a high
convergence performance and a classification performance.
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