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Abstract—We propose two chaotic circuits with hard
nonlinearities coupled with an inductor and investigate
some interesting phenomena in these systems. At first, we
look into that several types of synchronization modes are
stably excited. Next, we confirm that the synchronization
modes are chaotically vibrated by observation of attractors
and Poincare maps in the circuit systems. In particular,
we aim to find double-mode oscillations with two different
types of chaotic phenomena in these systems.

1. Introduction

Coupled oscillator systems with nonlinear characteris-
tics have shown some interesting phenomena and brought
improvement to natural science and fundamental research.
It is known that two oscillators coupled with an induc-
tor excite two different modes: In-phase single-mode and
anti-phase single-mode coexist for some range of param-
eter values. Both of negative resistors within these oscil-
lators are normal. Such an oscillator is called a soft os-
cillator or one with soft nonlinearity. In comparison with
soft oscillator, hard oscillator has a nonlinear negative re-
sistor whose i − v characteristics contain both negative and
positive. The characteristics near the origin act as a posi-
tive resistor. Therefore the oscillator converges on the ori-
gin for small initial values. Greater initial values than the
origin stable regions are required to generate the oscilla-
tion. Such an oscillator is called hard oscillator or one with
hard nonlinearities. Two oscillators with hard nonlineari-
ties coupled with an inductor excite four different modes:
Zero (non-oscillation), in-phase single-mode, anti-phase
single-mode and double-mode coexist for some range of
parameter values [1]. The double-mode shows simultane-
ous asynchronous oscillations with in-phase and anti-phase
frequency components. In particular, the double-mode os-
cillations are stably excited although they do not occur in
the case of common negative resistors with soft nonlinear-
ities.

On the basis of this study, we have proposed two coupled
chaotic circuits with hard nonlinearities for the purpose
of looking for the interesting phenomena as double-mode
chaotic oscillations [2][3]. We have confirmed double-
mode chaos with one-periodic in-phase and chaotic anti-
phase single-modes [2] and that with torus and chaos [3],

respectively. However, we have not found that with chaos
and chaos in these systems. We are considering the reason
that phenomena do not exist could be caused by their sin-
gle circuit architecture. Bifurcation phenomena to chaos
depend on the circuit architecture.

In this study, we propose two chaotic circuits with hard
nonlinearities coupled with an inductor and look for the
expected double-mode chaos. Especially, we have adopted
a different type of single circuit from the previous studies
[2][3].

2. Circuit Model

Figure 1 shows the proposed circuit model. Two chaotic
circuits with hard nonlinearities are coupled with an induc-
tor in the model. Each single circuit consists of an capaci-
tor, inductors, diodes and nonlinear negative resistors. The
i-v characteristics of the diodes are shown in Fig 2.

vd(i) =
{

rdi · · · (i 5 V/rd)
V · · · (i > V/rd) (1)

On the basis of the characteristics of the diodes, the non-
linear negative resistors and fourteen diodes can be shown
in Figs 3 and 4, respectively.

The number of series-connected diodes is proportional
to amplitude of each oscillation. Six diodes were adopted
in the previous studies [2][3]. An attractor in this model
is more dented than the previous model [2][3] though each
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Figure 1: Circuit model.
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Figure 2: i − v characteristics of a diode.

hard oscillator has to avoid exciting on the origin stable re-
gions as the positive resistor. Therefore the fourteen diodes
have been adopted in this model.

vr(i) =


V − ri · · · (i > J)(

Rdrd

2Rd + rd
− r

)
i · · · (|i| 5 J)

−V − ri · · · (i < −J),

(2)

(
where J =

2Rd + rd

Rdrd
V
)
,

vD(i) =


7V · · · (i > 2V/rd)
7
2

rd(i) · · · (|i| 5 2V/rd)

−7V · · · (i < −2V/rd).

(3)

The equations governing the circuit in Fig. 1 are de-
scribed as follows:

L1
dIk

dt
= −vr +

(
Ik + ik −

L1

L0
(I2 − I1) · (−1)k+1) − vk

)
L2

dik
dt
= −vr +

(
Ik + ik −

L1

L0
(I2 − I1) · (−1)k+1

)
− vk − vD(ik)

C
vk

dt
= Ik + ik −

L1

L0
(I2 − I1) · (−1)k+1 (4)

(k = 1, 2)

By changing the variables and parameters,

Ik =

√
C
L1

Exk, ik =

√
C
L1

Eyk, vk = Ezk,

t =
√

L1Cτ, ” · ” = d
dτ

α =
L1

L2
, β = r

√
C
L1
, γ =

L1

L0
,

a =
Rdrd

2Rd + rd

√
C
L1
, b =

rd

2

√
C
L1
. (5)

(k = 1, 2)
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Figure 3: i − v characteristics of a negative resistor.
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Figure 4: i − v characteristics of a negative resistor.

(1) is normalized as follows:

ẋk = − fr
(
xk + yk − γ(x2 − x1) · (−1)k+1

)
− zk

ẏk = α
{
− fr

(
xk + yk − γ(x2 − x1) · (−1)k+1

)
− zk − fD(yk)

}
żk = xk + yk − γ(x2 − x1) · (−1)k+1 (6)
(k = 1, 2)

The functions fr and fD correspond to vr (nonlinear nega-
tive resistor) and vD (fourteen diodes), respectively, and are
represented as follows:

fr(x) =


1 − γx · · · (x > 1/a)
(a − γ)x · · · (|x| 5 1/a)
−1 − γx · · · (x < −1/a),

(7)

fD(x) =


7 · · · (x > 1/b)
7bx · · · (|i| 5 1/b)
−7 · · · (x < −1/b).

(8)

3. Multi-mode Chaos

Four different oscillation modes (zero, in-phase single-
mode, anti-phase single-mode and double-mode) coexist in
the circuit model of the Fig. 1.
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Figure 5: Attractors and Poincare maps of three different oscil-
lation modes. (a) x1 - x2 Attractors. (b) x1 - z1 Attractors. (c) x1

- x2 Poincare maps. (A) β = 0.175. (B) β = 0.2. (1) In-phase
single-mode. (2) Anti-phase single-mode. (3) Double-mode.

Each mode is determined by the initial values. The
initial values (x1, x2, y1, y2, z1, z2) of in-phase single-
mode, anti-phase single-mode and double-mode are
(6.3, 6.5, 1.8, 1.5, 6.4, 6.5), (4.0,−4.1, 0.6,−0.5, 4.4,−4.2)
and (4.0, 5.9, 1.6,−1.5,−5.9, 6.0), respectively (Figs. 5 and
6). In this section, we show some simulation results of
some attractors and Poincare maps on each mode to inves-
tigate its behavior when the parameter β as the absolute
values of the negative resistor increases (Fig. 5). The other
parameters are fixed as α = 26.5, γ = 0.28, a = 1.15, b =
40 (Figs. 5 and 6).
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Figure 6: Time waveforms vs amplitude of three different os-
cillation modes. (A) β = 0.175. (B) β = 0.2. (1) In-phase
single-mode. (2) Anti-phase single-mode. (3) Double-mode.

Zero means that neither of the two oscillators is excited.
This state is always stable in some range of small initial
values. We do not mention this state in the rest of this
manuscript because it is trivial.
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In-phase single-mode means that the two oscillators are
synchronized with the in-phase. Although they are exactly
the quasi-in-phase synchronization, we see it as the in-
phase in this study. The in-phase single-mode is chaotic os-
cillation at β = 0.175 and 0.2 by the attractors and Poincare
maps. When β increases, we can see that the in-phase
single-mode is more chaotic.

Anti-phase single-mode means that the two oscillators
are synchronized with π phase difference. Although they
are not synchronized with exact π phase difference, we also
see it as the anti-phase in this study. The anti-phase single-
mode is chaotic oscillation at β = 0.175 and 0.2 by the at-
tractors and Poincare maps. When β increases, we can see
that the anti-phase single-mode is more chaotic.

Double-mode means that the above two single-mode os-
cillations (in-phase and anti-phase) are excited, simultane-
ously and asynchronously. The double-mode is chaotic os-
cillation at β = 0.175 and 0.2 by the attractors and Poincare
maps. When β increases, we can see that the Poincare maps
of the double-mode is more chaotic because the Poincare
maps more spread out and breakdown.

Figure 6 shows time waveforms of three different oscil-
lation modes. The frequency of the anti-phase single-mode
is higher than that of the in-phase. The envelope periods
of the double-mode time waveforms show the frequency
differences between the in-phase and anti-phase single-
modes. When β increases, we can also see that the three
modes are more chaotic from the time waveforms.

4. Conclusions

We proposed two identical chaotic circuits with hard
nonlinearities coupled with an inductor and investigated the
double-mode chaos in these systems by looking at some at-
tractors and Poincare maps. As a result, we confirmed the
interesting phenomena as double-mode chaos with chaos
(in-phase) and chaos (anti-phase) by computer simulations.
We will analyze the bifurcation of these three modes in the
near future.
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