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Abstract— Synchronization of switching phenomena can be
observed in a few coupled chaotic systems. Synchronization
of self-switching phenomena have reported by Sekiya et al.
Synchronization of self-switching phenomena is generated when
chaotic elements are asynchronized. In our past study, we
have observed similar phenomena on coupled chaotic circuits
with Nishio circuit. Although coupling topology and coupled
elements are different each other, synchronization of switching
phenomena have observed in each system. In this study, we
have investigate the phenomena on coupled chaotic maps. This
study shows that the phenomena can be observed in discrete and
continuous system. Synchronization of self-switching phenomena
have generality and may be observed in many natural system.

I. INTRODUCTION

There are many of nonlinear phenomena in the natural
world. For example, chaos synchronization, clustering phe-
nomenon, and so on. It is important that grasping the mecha-
nism of those phenomena to clarify nonlinear phenomena exist
in the natural world. Especially, synchronization phenomena
observed in coupled chaotic systems have been attracted
attentions since these system might be regarded as the models
of natural system and give contribution to clarify the high-
order complex nonlinear phenomena.

On the other hand, some chaotic elements have coexisting
attractors. Double-scroll attractor can be observed by chang-
ing the parameters for those chaotic elements. In chaotic
oscillators, double-scroll means the behavior that the solution
switches two attractors without external force. This phe-
nomenon is called “self-switching phenomenon”. Moreover,
”synchronization of self-switching phenomena” have reported
by Sekiya et al[1]. The phenomena mean that the switching
of attractor is occur synchronously in each subcircuit though
the system keeps asynchronous state. It is very interesting that
there are simultaneity though the system behaves disorderly.
We have observed similar phenomena in simple coupled
chaotic circuit[2]. The study shows that the phenomena have
generality and might be observed high-order coupled chaotic
system. It should be noted that the coupled chaotic system,
the chaotic element of which are included in each study, has
double-scroll attractor. In this study, we investigate synchro-
nization of switching phenomena on coupled chaotic map. The

investigated system is composed with a cubic function. This
chaotic element have symmetrical structure and the element
which is used in previous study also have same characteristic.
Namely, it is considered that a cubic function belongs to
double-scroll family. Although coupled chaotic map is discrete
system, synchronization of self-switching phenomena have
observed. This study indicates that the phenomena have broad
generality, and gives contribution to clarify the mechanism of
synchronization of swithcing phenomena.

II. COUPLED CHAOTIC SYSTEMS

Coupled chaotic system shown in Fig. 1 is investigated in
this study. Chaotic elements are shown in Fig. 2 (a) and (b).
Figure 2 (a) is a simple chaotic oscillators proposed by Nishio
et al. Equations for each system are described as follows. In

Fig. 1. System model.

chaotic element as shown Fig. 2, by changing parameters and
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Fig. 2. Chaotic elements. (a) Chaotic circuit. (b) Cubic function.
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variables as follows,
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the system equation of Fig. 2 (a) is described as follows:

ẋn = αxn + zn

ẏn = β {zn − v′dn}

żn = −xn − γyn − δ

(
Nzn −

N∑
k=1

zk

) (2)

We approximate i-v characteristic of bi-directionally coupled
diodes as following function.

v′dn = (2u(yn2)− 1) (3)

Chaotic element as shown Fig.2 (b) is written as

f(x) = −ax+ ax3. (4)

Then, system equation is described as follows:

xn+1(i) = (1− ϵ)f(xn(i)) +
ε

N

N∑
j=1

f(xn(j)). (5)

Where N and u() denote the number of chaotic elements and
step function respectively.

III. COEXISTING ATTRACTORS

Figure 3 shows the bifurcation diagram and coexisting
attractors of chaotic element as shown Fig. 2 (a) and (b)
respectively. Each bifurcation diagram is described with dif-
ferent initial values. Period-doubling bifurcation have begun at
different point of the vertical because these chaotic element are
the double-scroll family. Coexisting attractors of each element
are shown in Fig. 3 (2). We distinguished each coexisting
attractors from bifurcation diagram as follows.

In chaotic element (a),

(1) The Poincaré section is defined as zn = 1.0 and
ẏn < 0.

(2) When the solution hits the Poincaré section, and
xn ≤ 0.675, the color is set as red. In the case of
yn > 0.675, the color is set as blue.

In chaotic element (b),

(1) When xn(i) ≤ 0, the color is set as red. In the case
of xn(i) > 0, the color is set as blue.

These definitions are important to investigate switching of
attractors and as such, are being applied to the simulations
of this study.

TABLE I
ATTRACTOR-STATE DEFINITION.

Attractor-state State
{Red, Red} A
{Red, Blue} B

IV. IN CASE OF N = 2.

Figure 4 shows simulation results of each system model.
These figures show time waveforms Fig. 4(1) and lissajous
figure and scatter diagram Fig. 4(2). In the time waveforms,
there red and blue waves that are show attractor state. Namely,
the change of color means switching phenomena have oc-
curred. Green line also shows a difference of attractor state.
Synchronization of switching phenomena occurred in Fig. 4.
In each simulation, the amplitude of z1− z2 or xn(1)−xn(2)
is observed that denote each system keeps asynchronous state.
Although, asynchronous state is kept at each system, switch-
ing phenomena are synchronized. We call such phenomena
”synchronization of switching phenomena”. These phenomena
are collapsing according to decrease the coupling strength. In
circuit experiment, similar phenomena also can be observed
as shown Fig. 5. It should be noted that anti-phase switching
is observed in both systems.
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z 1 z 2
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Xn(1)

Xn(2)

Xn(1) - Xn(2)
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Fig. 4. Computer simulation result. (A) Chaotic element as shown Fig. 2(a).
N = 2, α = 0.40, β = 3.0 and δ = 0.2. (1) Time waveforms of zi
and z1 − z2. (2) z1 vs z2. (B) Chaotic element (b). N = 2, a = 2.8 and
ε = 0.875.(1) Time waveforms of xn(i). (2) Scatter diagram of xn(1) vs
xn(2).

V. MECHANISM OF SYNCHRONIZATION OF
SWITCHING PHENOMENA

In this section, we investigate the mechanism of syn-
chronization of switching phenomena. Figure 6 shows the
distribution of xn(1). Note that the requirement of switching
is when the element satisfy |xn(i)| > 1. Blue pins show the
distribution of xn(1) in case of state A, red pins show in
case of state B. Table. I shows state definition of attractor.
Red pins are sifted to center of the distribution compare with
blue pins. Namely, in case of state B, switching phenomena
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Fig. 3. Computer simulation results. (A) Chaotic element as shown in Fig. 2(a). (1)Bifurcation diagram. β = 3.0. Horizontal: α. (2) Coexisting attractors.
α = 0.4 and β = 3.0. (B) Chaotic element as shown Fig. 2(b).(1) Bifurcation diagram. Horizontal: a. (2) Coexisting attractors. a = 2.8.

Fig. 5. Circuit experiment of coupled chaotic circuit of Fig. 2
(a). Vertical:vn[2V/dvi], Horizontal:time[10ms/dvi]. N = 2, L1 =
642.8[mH], L2 = 211.1[mH], C = 7.06[nF], G = 0.089[mS].

hardly occur than state A. Figure 8 shows the probability
of switching. We measured the probability of switching in
1 < n < 100000. Both state are decreased according to
increasing the coupling strength. However, state A have a
certain probability of switching independent of ϵ. On the
contrary, the probability is decreased substantially according
to increasing the coupling strength. Namely, state B is stable
compare with state A for this system. Such behavior can be
explained as follows. In case of state A, each element has
positive value. Therefore probability of switching is increased
since the absolute value of xn(1) become large. In case of
state B, an element takes positive value while the other takes
negative value. For such occasion, the absolute value of xn(1)
become small and probability of switching is decreased. It is
considered that the mechanism of switching phenomena in
this system. Figure 7 shows the probability of switching per
1τ in the system of Fig. 2 (b). We measured the probability
in 2000 < τ < 2000000. The probability is also decreased
by increasing the coupling strength. We assume that there are
similar mechanisms in the system.
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Fig. 6. Distribution of the value. a = 2.8, ε = 0.875.

Fig. 7. Probability of switching of element as shown Fig. 2(a). α = 0.4,
β = 3.0.

Fig. 8. Probability of switching of Fig. 2(b). a = 2.8.

VI. IN CASE OF N = 3

Figure 10 shows simulation results of coupled chaotic map
in case of N = 3. Synchronization of switching phenomena
can be observed, however, the phenomena is not occurred con-
stantly. Additionally, the simultaneity of switching is slightly
collapsed. Figure 9 shows simulation result of coupled chaotic
circuit. In this case, the phenomena are not also occurred
constantly. Anti-phase switching is observed in both systems.
In case of N = 3, the systems obey the mechanism explained in
section V . In the system proposed by Sekiya et al, synchro-
nization of switching phenomena is observed with in-phase
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Fig. 9. Computer simulation resul of chaotic element as shown Fig. 2(a).
N = 3, α = 0.4, β = 3.0 and δ = 0.17.
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Fig. 10. Computer simulation resul of chaotic element as shown Fig. 2(b).
N = 3, a = 2.8, δ = 0.105.

switching.

VII. CONCLUSION

In this study, synchronization of switching phenomena have
investigated in continuous and discrete systems. As a result,
anti-phase synchronization of switching phenomena have ob-
served in each system. Additionally, mechanism of the phe-
nomena have declared in discrete system. This mechanism give
contribution to clarify the phenomena observed in continuous
system. These results denote that synchronization of switching
phenomena may be observed in other natural system generally.
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