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Abstract

Studies on chaos synchronization in coupled chaotic circuits
are extensively carried out in various fields. In this study,
we investigate synchronization phenomena observed in three
simple chaotic circuits cross-coupled by three inductors. In-
teresting synchronization phenomena can be confirmed by
computer simulations and circuit experiments.

1. Introduction

Synchronization phenomena in complex systems are very
good models to describe various higher-dimensional nonlin-
ear phenomena in the field of natural science. Studies on syn-
chronization phenomena of coupled chaotic circuits are ex-
tensively carried out in various fields [1]- [5]. We consider
that it is very important to investigate the phenomena related
with chaos synchronization to realize future engineering ap-
plication utilizing chaos. In our previous study, we have in-
vestigated the cross-coupled chaotic circuits and reported var-
ious interesting synchronization phenomena [6]- [9].

In this study, we consider three Shinriki-Mori chaotic cir-
cuits [9] cross-coupled via three inductors. The circuit is a
special version of the ring considered in [7], but we have not
investigated the phenomena in detail because we did not no-
tice the phase differences of small oscillations until we no-
ticed it in 2009 [8]. By computer simulations and circuit ex-
periments, we investigate the synchronization phenomena in
detail, in particular, three-phase synchronizations of small os-
cillations are confirmed to be generated.

2. Circuit Model

Figure 1 shows the circuit model. In the circuit, three
Shinriki-Mori chaotic circuits are cross-coupled via inductors
L2.

First, we approximate the v − i characteristics of the non-
linear resistors consisting of the diodes by the following 3-

Figure 1: Circuit model.

segment piecewise-linear functions.

idn =


G(v1n − v2n − V ) (v1n − v2n > V )

0 (|v1n − v2n| ≤ V )

G(v1n − v2n + V ) (v1n − v2n < −V )

(1)

(n = 1, 2, 3)

The circuit equations are described as follows.

L1
di1n
dt

= v2n

C1
dv1n
dt

= gv1n − i2n − idn

C2
dv2n
dt

= idn + i2,n+1 − i1n

L2
di2n
dt

= v1n − v2,n−1,

(2)

(n = 1, 2, 3)

where v20 = v23 and v24 = v21. By using the following
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parameters α =
C2

C1
, β =

√
L1

C2
G, γ =

√
L1

C2
g, δ =

L1

L2
,

t =
√
L1C2τ,

(3)

and variables

i11 =

√
C2

L1
V x1, i12 =

√
C2

L1
V x2, i13 =

√
C2

L1
V x3,

v11 = V y1, v12 = V y2, v13 = V y3,

v21 = V z1, v22 = V z2, v23 = V z3,

i21 =

√
C2

L1
V ω1, i22 =

√
C2

L1
V ω2, i23 =

√
C2

L1
V ω3,

(4)
the normalized circuit equations are given as follows.

ẋn = zn

ẏn = α(γyn − ωn − βf(yn − zn)

żn = βf(yn − zn) + ωn+1 − xn

ω̇n = δ(yn − zn+1)

(5)

(n = 1, 2, 3)

where z20 = z23 and z24 = z21. The nonlinear function f(·)
corresponds to the v− i characteristics of the nonlinear resis-
tors consisting of the diodes and are assumed to be described
by the following 3-segment piecewise-linear functions:

f(yn − zn) =


yn − zn − 1 (yn − zn > V )

0 (|yn − zn| ≤ V )

yn − zn + 1 (yn − zn < −V )

(6)

(n = 1, 2, 3)

3. Synchronization Phenomenon

The coupled circuits generate various synchronization
states. Two examples of steady states are shown in Fig. 2.
These two synchronization states are obtained for the same
parameter set of α = 2.0, β = 4.0, γ = 0.15 and δ = 0.004
however with different initial conditions. In Fig. 2(a), two cir-
cuits are completely synchronized in in-phase and the other
circuit exhibits some phase difference (time waveform shows
that the switching from plus to minus or from minus to plus
delays 90 degrees from the other circuits. On the other hand,
in Fig. 2(b), all three circuits seem to be synchronized in in-
phase from the time waveforms, however, the attractors do
not show in-phase synchronizations.

In order to investigate how many steady states coexist and
why the shape of attractors in Fig. 2(b) does not show in-
phase, we investigate the time waveforms of the voltages

(a)

(b)

Figure 2: Typical examples of observed synchronization phenom-
ena for α = 2.0, β = 4.0, γ = 0.15 and δ = 0.004. Upper figures
show the attractor on v11−v12 phase plane, on v11−v13 phase plane
and on v12 − v13 phase plane from the left. Lower figure shows the
time waveforms of v11. v12 and v13.

more carefully, because we realized in 2009 that small os-
cillations could synchronize when two circuits are cross-
coupled [13]. Figure 3 shows closer looks of the time wave-
forms of the three voltages. Figures 3(a) and 3(b) correspond
to the steady states in Figs. 2(a) and 2(b), respectively. Be-
cause v11 and v12 are completely synchronized in in-phase
in Fig. 2(a), we can see only two waveforms in Fig. 3(a).
From this figure we can notice that the small oscillation of
v13 is synchronized in anti-phase with the small oscillations
of v11 and v12. Although all three waveforms looked like to
be synchronized in in-phase in Fig. 2(b), the closer look in
Fig. 3(b) revealed that the small oscillations of these three
voltages are synchronized clearly in 3-phase. This is why the
attractors in Fig. 2(b) are not on the in-phase synchronization
space completely. Also we can understand why the shapes
of the attractors show some phase differences in the first and
the third quadrants of the phase space in Fig. 2(b). This fact
encouraged us to search many more coexisting steady states,
because we can expect a large number of steady states with
local 3-phase of small oscillations. As we expected, we could
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(a)

(b)

(c)

Figure 3: Magnified time waveforms of three voltages obtained
from three circuits. (a) and (b) correspond to Fig. 2(a) and (b), re-
spectively.

find many different steady states and one example is shown in
Fig. 3(c). Combinations of the timing shift of the switching
from minus to plus or from plus to minus with local 3-phase
of small oscillations make it possible to generate a large num-
ber of steady states.

The amount of the timing shift of the switching influences
the shape of the attractors. Figure 4 shows the attractors in
3-dimensional phase space. Attractors in Figs. 4(a), (b) and
(c) correspond to the time waveforms in Figs. 3(a), (b) and
(c), respectively. We can see that the sojourn time of the so-
lution in the plus or the minus region decides the shape of the
attractors.

4. Parameter Dependency

Figure 5 shows the parameter dependency of the observed
phenomena. As increasing the coupling parameter δ, the so-

v11

v12

v13

(a)

v11 v12

v13

(b)

v11

v12

v13

(c)

Figure 4: Attractors in 3-dimensional phase space (v11−v12−v13).
(a), (b) and (c) correspond to Fig. 3(a), (b) and (c), respectively.

journ time in the plus or the minus regions becomes shorter.

5. Circuit Experiments

Finally, circuit experimental results are shown in Fig. 6.
We can say that this interesting phenomenon can be observed
from both computer calculations and circuit experiments.

6. Conclusions

In this study, we have investigated the synchronization phe-
nomena observed from three simple chaotic circuits cross-
coupled by inductors. The detailed investigation of time
waveforms clarified several interesting phenomena.

Investigating the coexistence of the states and statistical
analysis of the observed phenomena are our important future
work as well as more detailed explanation of the mechanism
of the generations.
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(a)

(b)

(c)

Figure 5: Parameter dependency of synchronization. (a) δ=0.002.
(b) δ=0.003. (c) δ=0.005.
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