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Abstract

In this study, we investigate clustering patterns generated in
coupled chaotic circuits networks. In these networks, the cou-
pling strength is reflected the distance information and each
chaotic circuit is connected to all chaotic circuits. We con-
sider the relationship between coupling strength and phase
difference by changing the scaling parameter of coupling
strength. Furthermore, we confirm the various phase syn-
chronization patterns when we change the number of chaotic
circuits.

1. Introduction

Recently, our lives deal with large amount of information.
Our society is called advanced information network society.
Because of this, many informations are gradually processed
day by day. Therefore, the ideas of clustering algorithms were
proposed and applied to information processing. Clustering
algorithms have widespread applications in different fields,
such as business data mining, image processing and analysis
of biological data. There are variety of different clustering al-
gorithms along with the many applications. Many algorithms
were proposed to utilize synchronization phenomena, for in-
stance in Coupled Map Lattics (CML), for clustering [1]-[3].
Previously, many of these studies were using discrete time
model for clustering, however analysis of using a continuous
time model has not almost studied. Therefore, we focus on
research of clustering phenomena using electronic circuits in
continuous time model.

On the other hand, synchronization phenomena is one of
typical phenomena when we analyze coupled chaotic circuits.
This phenomenon widely can be observed and studied in the
field of natural and technical sciences. In order to understand
synchronization phenomena in detail, we analyze electronic
circuits. Coupled chaotic circuit is composed of an electronic
circuits and one of suitable model to analyze the synchroniza-
tion phenomena. Moreover, we can see various phenomena

not only synchronization phenomena. However, all phenom-
ena are not really investigated. Therefore, we consider that
our study is new approach to investigate the synchronization
phenomena and clustering phenomena in coupled chaotic cir-
cuits.

In a previous study, we investigated the relationship be-
tween clustering and density of coupled chaotic circuits in 2-
dimensional place [4]-[6]. For this investigation, the coupling
strength reflected the distance information and we changed
the number of circuits in cluster. We showed that clustering
phenomena affected other cluster when density in the chaotic
circuits was high. We also observed that networks of coupled
chaotic circuits could split into different synchronized groups.

In this study, we investigate clustering patterns generated in
coupled chaotic circuits networks. In these networks, chaotic
circuits are connected to all chaotic circuits. For this investi-
gation, we change the variable parameter of coupling strength
and density of chaotic circuits. From the results, the network
can be observed 3 clustering patterns. We consider the rela-
tionship between scaling parameter and phase difference by
changing the scaling parameter of coupling strength. Addi-
tionally, we confirm the various phase synchronization pat-
terns when we change the density of chaotic circuits.

2. Circuit Model

Figure 1 shows the model of the chaotic circuit, investi-
gated in [7]-[9].

Figure 1:Chaotic circuit.
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Thefollowing equations show circuit equations when each
chaotic circuit is coupled globally with each other.

dxi

dτ
= αxi + zi

dyi

dτ
= zi + f (y) (1)

dzi

dτ
= −xi − βyi −

N∑
j=1

γi j(zi − zj)

(i, j = 1,2, · · ·,N)

For the computer simulation, we set the parameters asα =
0.460,β = 3.0 andδ = 470. The characteristic of the function
f (y) can be described 3-segment piecewise-linear function.
The value ofγi j reflects the distance between the circuits in
an inverse way, described by the following equation:

γi j =
g

(lengthi j )2
. (2)

lengthi j denotes the Euclidean distance between thei − th cir-
cuit and thej− th circuit. The parameterg is a scaling param-
eter that determines the coupling strengths.

3. Clustering Phenomena

3.1 Clustering Phenomena
In this section, we investigate clustering phenomena when

we configure network of coupled chaotic circuits in 2-
dimensional place. In our previous study [6], we researched
the relationship between clustering and density of coupled
chaotic circuits when we changed density of chaotic circuits.
Arrangements of chaotic circuits are shown in Fig. 2. Fig-
ure 2 (a) is composed same number of chaotic circuits, how-
ever Fig. 2 (b) is composed high density of chaotic circuits in
inside and some low density chaotic circuits groups. In these
networks, we replace chaotic circuits with a simple model
like small circle.

(a) Same number of groups. (b) Different number of groups.

Figure 2:Arrangements of chaotic circuits.

Simulation results in these networks are shown in Fig. 3.
From simulation results, all chaotic circuits are synchronized

in one cluster from the result of Fig. 3 (a), however we can
see 2 clusters from chaos synchronization between high den-
sity group and same low density groups from the result of
Fig. 3 (b).

(a) One cluster. (b) Two clusters.

Figure 3:The clustering results.

From these results, clustering phenomena are related den-
sity of coupled chaotic circuits.

3.2 Investigation of Clustering Phenomena
Next, we investigate the clustering result corresponding to

Fig. 3 (b) in detail. This network can be divided 2 clusters
between high density and low density from chaos synchro-
nization. We consider the state of this network when we
change the parameterg determined by Eq. (2). Furthermore,
we calculate the phase difference between chaotic circuits us-
ing computer simulation.

For this simulation, the iteration is set toτp = 10,000
for calculating the result more precisely. Figure 4 shows
the phase difference between two chaotic circuits when we
change the value of parameterg.

Figure4: The relationship betweeng and phase difference.

We define state of synchronization patterns from the av-
erage of phase difference when we calculateτp = 10,000.
Synchronized state can be defined if the average of phase dif-
ference below 40◦. Similarly, we define asynchronous state
that the average of phase difference is between 70◦ and 110◦.
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Table 1: State of networks
Thevalue ofg In - In In - Out Out - Out

2.0× 10−6 ≤ g ≤ 3.0× 10−5 Syn. Not-syn. Not-syn.
4.0× 10−5 ≤ g ≤ 2.0× 10−4 Syn. Not-syn. Syn.
3.0× 10−4 ≤ g ≤ 4.0× 10−4 Syn. Syn. Syn.

In the region betweeng = 2.0× 10−6 andg = 3.0× 10−5 in-
side chaotic circuits group is synchronized one cluster, how-
ever other chaotic circuits that composed outside groups are
not synchronized. In the region betweeng = 4.0× 10−5 and
g = 2.0× 10−4 inside chaotic circuits group is synchronized
one cluster, also outside chaotic circuits groups are synchro-
nized one cluster. Therefore, clustering phenomena can be
observed in this region. Finally, all chaotic circuits are syn-
chronized in one cluster if the region betweeng = 3.0× 10−4

andg = 4.0× 10−4. Thus, this network can be observed 3
clustering patterns from the average of phase difference.

4. Relationship between Phase Difference and Density

In this section, we calculate the phase difference between
inside chaotic circuits and inside chaotic circuits, and be-
tween inside chaotic circuits and outside chaotic circuits
when we change density of chaotic circuits in inside shown in
Fig. 3. Moreover, we calculate range of phase difference be-
tween maximum and minimum. Here, we change the number
of inside chaotic circuits in inside from 1 to 9.

First, we calculate the phase difference inside chaotic cir-
cuits shown in Tab. 2. Table 2 shows the phase difference,
maximum value and minimum value. Figure 5 shows the re-
sult of relationship between phase difference and density of
chaotic circuits. In this result, the average of each phase dif-
ference is below 40◦. Thus chaotic circuits in inside are syn-
chronized regardless of the density.

Figure5: Phase difference and range of phase difference (in-in).

Next, we calculate the phase difference between inside
chaotic circuits and outside chaotic circuits shown in Tab. 3.
Table 3 shows the phase difference, maximum value and min-
imum value. Figure 6 shows the result of relationship be-
tween phase difference and density of chaotic circuits. From

Table 2: The phase difference (in-in)
Densityof circuits Ave. Max. Min.

2 18.894◦ 102.898◦ 0.001◦

3 19.502◦ 109.258◦ 0.001◦

4 19.029◦ 107.431◦ 0.002◦

5 17.067◦ 86.363◦ 0.001◦

6 16.272◦ 94.816◦ 0.002◦

7 17.554◦ 106.801◦ 0.002◦

8 16.678◦ 101.588◦ 0.001◦

9 18.375◦ 118.286◦ 0.003◦

this result, chaotic circuits between inside and outside are
synchronized when the density in inside is between 1 and 5,
however state of other density are not clear. Therefore, we use
the frequency distribution to reveal the synchronized state.

Figure6: Phase difference and range of phase difference (in-out).

Table 3: The phase difference (in-out)
Densityof circuits Ave. Max. Min.

1 23.640◦ 85.773◦ 0.003◦

2 17.425◦ 77.697◦ 0.009◦

3 16.442◦ 87.398◦ 0.001◦

4 17.500◦ 83.591◦ 0.008◦

5 32.938◦ 112.724◦ 0.006◦

6 63.203◦ 178.035◦ 0.135◦

7 90.618◦ 179.972◦ 0.032◦

8 94.031◦ 179.998◦ 0.043◦

9 97.988◦ 179.996◦ 0.007◦

Figure 7 shows the synchronization patterns from Lis-
sajous figures. Each pattern in these figures correspond to
Fig. 6 and Tab. 3. We calculate the number of phase do-
main for the phase difference. The number of counts is set
to τp = 10,000. From these figures, in the small region of
the average of phase difference are synchronized with small
value for phase domain. Also, in the region near value of 90◦

are not synchronized from Lissajous figures and phase do-
main. However, in the region of number of 6 chaotic circuits,
synchronization state is not sure. Additionally, the maximum
value is 178.035◦ in the phase domain. In this region, the
phase domain is between 0.135◦ and 178.035◦, namely this
region composed of 6 chaotic circuits is not synchronized.
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(a) 1 chaotic circuit. (b) 2 chaotic circuits. (c) 3 chaotic circuits.

(d) 4 chaotic circuits. (e) 5 chaotic circuits. (f) 6 chaotic circuits.

(g) 7 chaotic circuits. (h) 8 chaotic circuits. (i) 9 chaotic circuits.

Figure 7:State of synchronization patterns (horizontal axis: phase difference, vertical axis: frequency distribution).

Therefore, we define the state of synchronization or asyn-
chronous by using the average of phase difference and phase
domain.

As we mentioned before, we define synchronized state that
phase difference is below 40◦. Also, we define asynchronous
state that the phase difference is between 70◦ and 110◦ and
the phase domain is between 0◦ and 180◦. Thus, we define
synchronization patterns by using phase difference and phase
domain. Furthermore, the coupled chaotic circuits networks
can be observed some clustering patterns from chaos synchro-
nization.

5. Conclusions

In this study, we have investigated clustering patterns gen-
erated in coupled chaotic circuits networks. In these net-
works, the coupling strength reflected the distance informa-
tion and each chaotic circuit is connected to all chaotic cir-
cuits. For this investigation, we have changed the scaling pa-
rameter of coupling strength and number of chaotic circuits
composed of cluster. We have observed some clustering pat-
terns from chaos synchronization. From computer simulation
results, we have confirmed that the state of clustering patterns
depend on the scaling parameterg and density of chaotic cir-
cuits networks. Furthermore, we have made clear that it is
efficient for using the average of phase difference and phase
domain.

In our future work, we would like to study the clustering
phenomena in the case of large scale networks. Additionally,

we hope to apply this clustering method for data mining, im-
age processing and something application in our lives.
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