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Abstract

In this study, we investigate synchronization phenomena ob-
served in completely coupled ten van der Pol oscillators. Ten
oscillators are divided into three groups. Each group consists
of two, three and five oscillators. When the nonlinearity of
each oscillator has different values, we observe the interest-
ing synchronization phenomena in the circuit system.

1. Introduction

Synchronization phenomena can be observed everywhere
in natures such as firefly luminescences, cry of frogs, car-
diac heartbeat and so on. Coupled oscillators are often used
to investigate the synchronization phenomenon. Also stud-
ies on synchronization phenomena of coupled oscillators are
extensively carried out in various fields, physics, biologies,
engineerings and so on [1], [2]. Therefore, many types of
the coupled circuit models using van der Pol oscillators are
proposed to understand synchronization phenomena. Endo et
al. have reported the details of a theoretical analysis and the
corresponding circuit experiments on electrical oscillators ar-
ranged in a ladder, a ring and a two-dimensional array topolo-
gies [3]-[5]. Moreover, coupled oscillatory systems can also
produce interesting phase patterns, including wave propaga-
tion, clustering and complex patterns. Setou et al. have
observed interesting synchronization phenomena (oscllation
death, independent oscillation and double mode oscillation)
when van der Pol oscillators with different frequencies are
coupled by means of a resistor in a star topology [6]. We as-
sume that any frustrations such as different frequencies have
one possibility to produce interesting synchronization phe-
nomena in oscillatory systems. However, there are not many
discussions the coupled oscillatory systems with nonlinearity
errors.

In this study, we investigate synchronization phenomena
observed in completely coupled ten van der Pol oscillators,
when ten van der Pol oscillators are divided into three groups.
Each oscillator has different values of the nonlinearity de-

pending on the error parameters. By using computer simula-
tions, we focus on the phase difference between the coupled
oscillators in each group. We observe interesting synchro-
nization phenomena when the nonlinearity error is changed.

2. Circuit model

Figure 1 shows the conceptual circuit model of our inves-
tigation. Ten van der Pol oscillators are completely coupled
and divided into three groups. Group1 is composed of 1st
and 2nd oscillators. Group2 is composed of 3rd, 4th and 5th
oscillators. Other oscillators belong to group3.

Figure 1: Conceptual circuit model.

The electrical circuit model of van der Pol oscillator is
shown in Fig. 2(a). Figure 2 shows the circuit model when
ten van der Pol oscillators are completely coupled by resis-
tors.

The vk − iRk characteristics of the nonlinear resistor are
approximated by the following equation.

iRk = −g1vk + g3v
3
k (k = 1, 2, ..., 10), (1)
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(a) van der Pol oscillator.

(b) Completely coupled ten van der Pol oscillators.

Figure 2: Circuit model.

By using the variables and the parameters,
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The normalized circuit equations of ten coupled van der
Pol oscillators are given as follows:

dxk

dτ
= ε(1 − x2

k)xk − yk − γ
10∑

k=1

xk

dyk

dτ
= xk.

(2)

where ε is the nonlinearity and γ is the coupling strength.

3. Simulation results

For the computer simulations, we calculate Eq. (2) using
a fourth-order Runge-Kutta method with step size h = 0.005.

The parameter of the standard nonlinearity is fixed with ε =
1.00, and the coupling strength is set to γ = 0.01. In this
section, we investigate synchronization state when the error
is added to the nonlinearity of each oscillator. We define the
error rate of each oscillator as follows:

ε1 = ε

ε2 = ε + δ

ε3 = ε + δ + g

ε4 = ε + 2δ + g

ε5 = ε + 3δ + g

ε6 = ε + 4δ + 2g

ε7 = ε + 5δ + 2g

ε8 = ε + 6δ + 2g

ε9 = ε + 7δ + 2g

ε10 = ε + 8δ + 2g,

(3)

where, δ denotes the small error and g denotes the large er-
ror of the nonlinearity. We set the range of the parameters
δ=[0.00:0.030], g=[0.00:0.30].

First, we investigate synchronization phenomena in ten
coupled oscillators when the nonlinearity errors are fixed with
δ = 0.01, g = 0.00. In this case, we confirm that all oscillators
are synchronized at in-phase state.

Next, we investigate the synchronization phenomena when
the nonlinearity errors are fixed with δ = 0.01, g = 0.22. Fig-
ure 3 shows the phase difference between two oscillators in
each group. We can see that the phase difference between 1st
and 2nd oscillators in group1 is changing and has amount of
the phase shift (Fig. 3 (a)). While, 3rd/4th and 6th/7th oscil-
lators in group2 and group3 are synchronized at in-phase as
in Figs. 3 (a),(b).

Figure 4 shows the phase difference between 1st and 2nd
oscillators with iteration time. From this figure, we observe
the switching phenomenon of the phase difference. The phase
difference changes from 5 to 70 degrees periodically.

(a) 1st-2nd (b) 3rd-4th (c) 6th-7th

Figure 3: Phase difference between two oscillators in each
group (δ = 0.01, g = 0.22).
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Figure 4: Phase difference of 1st and 2nd oscillators. (δ =
0.01, g = 0.22).

Figure 5 shows the phase difference between the groups for
δ = 0.01, g = 0.22. The synchronization state of oscillators
between group1 and group2 or group1 and group3 are asyn-
chronous (Figs. 5 (a), (b)). The oscillators between group2
and group3 are synchronized with amount of phase shift as
shown in Fig. 5 (c). From Fig. 5, we can see that the synchro-
nization states between first and second oscillators in group1
are affected by group2 and group3.

(a) group1-group2 (b) group1-group3 (c) group2-group3

Figure 5: Phase difference between groups (δ = 0.01, g =
0.22).

By increasing the value of g, we observe the different type
of synchronization phenomena. In Fig. 6, the results of phase
differences between two oscillators in each group for δ =
0.01, g = 0.30 are shown. The two oscillators in each group
are almost synchronized at in-phase state. Figure 7 shows the
phase difference between first and second oscillators with it-
eration time. We can see that the aperiodic oscillation of the
phase difference from 5 to 20 degrees.

Figure 8 shows the phase difference between the groups for
δ = 0.01, g = 0.30. In this case, we confirm that the synchro-
nization state of oscillators between groups are asynchronous
for all cases.

Next, we focus on synchronization phenomena depending
on the parameter dependency. Figure 9 shows the phase dif-
ference between 1st and 2nd oscillators when the parameters

(a) 1st-2nd (b) 3rd-4th (c) 6th-7th

Figure 6: Phase difference between two oscillators in group
(δ = 0.01, g = 0.30).

Figure 7: Phase difference of 1st and 2nd oscillators. (δ =
0.01, g = 0.30).

(a) group1-group2 (b) group1-group3 (c) group2-group3

Figure 8: Phase difference between groups (δ = 0.01, g =
0.30).

of the nonlinearity error δ and g are changed. By increasing
the value of δ, the oscillation frequency of the phase differ-
ence becomes slow and the range of the phase shift becomes
large (see Fig. 4 and Fig. 9 (a)). In comparison between Fig. 7
and Fig. 9 (b), we can see that the range of the phase differ-
ence becomes large.

Finally, the sojourn time of in-phase state and one-period is
measured by changing the nonlinearity error g. In this simula-
tion, in-phase state is defined when the value of the phase dif-
ference smaller than 15 degrees. One-period means the sim-
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(a) δ = 0.02, g = 0.19.

(b) δ = 0.02, g = 0.30.

Figure 9: Phase difference of first and second oscillators.

ulation time between the peaks of the phase difference. The
simulation results for δ=0.01 and 0.02 are shown in Fig. 10.
The horizontal axis is the nonlinearity error g and the vertical
axis is the sojourn time (τp). From these results, we confirm
that the sojourn time of in-phase and one-period decreases
with the nonlinearity error g.

4. Conclusions

In this study, we have investigated synchronization phe-
nomena observed in completely coupled ten van der Pol os-
cillators, when ten van der Pol oscillators are divided into
three groups. Each oscillator has different values of the non-
linearity depending on the error parameters. By using com-
puter simulations, we have observed interesting synchroniza-
tion phenomena when the nonlinearity error is changed.

For the future work, we would like to investigate the ob-
tained synchronization phenomena in detail and apply this
proposed circuit system to general large-scale networks.

Acknowledgment

This work was partly supported by JSPS Grant-in-Aid for
Scientific Research 22500203.

(a) δ = 0.01.

(b) δ = 0.02.

Figure 10: Sojourn time of the in-phase state.
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