®
2012 International Symposium on Nonlinear Theory and its Applications O‘O‘O'OO
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012 6’0"0

NOLTA2012

Synchronization of Coupled Chaotic Circuits in Regular Tetrahedron Form

Takahiro Nagai, Yoko Uwate and Yoshifumi Nishio

Dept. of Electrical and Electronic Engineering, Tokushima University,
2-1 Minamijosanjima, Tokushima, 770-8506 Japan
Email: {nagataka, uwate, nishi@ee.tokushima-u.ac.jp

Abstract—This article presents synchronization phe-
nomena of coupled chaotic circuits by regular tetrahedral y (
form. We pay attentions to the behavior of each chaotic :
circuit and observe the synchronization states between ad-
jacent circuits. In this circuit model, we can observe several N_r
patterns of synchronization phenomena.

1. Introduction
Figure 2: Chaotic circuit.

There are a lot of synchronization phenomena in natural
environment. It is one of the nonlinear phenomena that we
can actually observe. For example, swing of the pendulumijzation phenomena. Especially, we can observe very in-
firefly luminescence, cardiac heartbeat etc. are well knowsresting synchronization phenomena when we couple each
as the synchronization phenomena. Synchronization phieductor and ground by coupling resister For example,
nomena have a feature that the set of small power can pre circuit model which coupled three van der Pol oscilla-
duce very big power by synchronizing at a time. Thereforeors as a ring topology has been found out the three phase
studies of synchronization phenomena have been widedynchronization (phase shift 120 degrees) by the interac-
reported not only engineering but also the physical and bidion of each oscillator [5]. However, the three-phase syn-
logical fields. Coupled chaotic circuits systems are suitablehronization was always observed stably in that system. In
models to express many kinds of high-dimensional nonlirsur previous study, we have investigated synchronization
ear phenomena. Especially, many researchers are attragdd@énomena of coupled van der Pol oscillators in regular
to chaotic mechanisms because chaotic synchronizatiograhedral form (see Fig. 1) [6]. We could observe that the
include complex behaviors [1]-[4]. phase dierence between adjacent oscillators changed and

In our basic investigations, we use several van der Pol oftat the synchronization was destroyed after the adjacent
cillators. Van der Pol oscillators have been coupled in vaescillators synchronize with anti-phase. In other words,
ious form and have been investigated about their synchrthis circuit model has the feature of repeated anti-phase
synchronous and asynchronous states.

In this study, we investigate synchronization phenom-
ena in coupled chaotic circuits with tetrahedron form. We
pay attentions to the behavior of each chaotic circuit and
observe the synchronization states between adjacent cir-
cuits. Also, we make comparison between coupled oscil-
lators and coupled chaotic oscillators and confirm the rota-
tion of phase dterences between adjacent chaotic circuits.
Moreover, we research synchronization states by changing
chaotic parameters.

2. Circuit Model

We show the chaotic circuits using in this investigation
in Fig. 2. This circuit is composed of two types of induc-
tors, a capacitor, a negative resistor and interactive diodes.
We couple each chaotic circuit vla and ground by cou-
pling resistorR in this study. We describe this circuit dia-
Figure 1: Four coupled oscillators. gram of coupled chaotic circuits in Fig. 3. In the computer




3rd circuit.
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Figure 4: Attractor of each chaotic circuit (horizontal
axisXx, vertical axisyk (k =1, 2, 3, 4).
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L Figure 5: Time waveform of the each circuit.
Figure 3: Circuit model for tetrahedron form.

elements, we suppose the frequency eeg and calcu-
simulations, we assume that tkig — ix characteristics of late the phase fferences between adjacent chaotic circuits.
the nonlinear resistor consisting of diodes by the following
function. 3. Synchronization Phenomena

We calculate Eq. (2) using the fourth-order Runge-Kutta
method with the step size= 0.001. In this simulation, we
fix the parameters = 20.0,7 = 0.00001,Aw; =0.0, Aw;
=0.001,Aw3 =0.002,Aw,4 =0.003, and change the bifur-
cation parameter or the coupling strength. As a result, we
can find out very interesting phase synchronizations which

Va(ix) = Vraik (1)
The normalized circuit equations are expressed as:

dxak 1

o é{(xak+xbk+ Yok + Vi) = Z = Xak = ¥ (Xak + %)

% = %[(Xak‘*‘ Xok + Xk + Yk) = Z — 17Xk = ¥(Xok + Xn)) could not been observed in four coupled oscillators. For
dxe 1 example, we show the simulation result of the synchro-
e §{(Xak+xbk+xck+yk)—zk—nxck—7(><ck+ Xa)) (2)  nization phenomena in Fig. 4 and Fig. 5. In Fig. 4, we
dyi show the attractor of each chaotic circuit and the horizontal

o af(Xak + Xok + Xck + Yk) — Z — T(Yk)

da _

axis is the electric current, and the vertical axis is the volt-
age. We set the parametgts= 0.330 andy = 0.250. In

(1 + A (Xak + Xok + Xek + Yio)- this case, we can observe complex behaviors of time wave-

form and phase étierences between adjacent chaotic cir-
cuits are shown as Fig. 6. In this figure, first and fourth
circuit, second and third circuit synchronize in-phase and
phase diterences between adjacent other circuits are go-
ing to approach anti-phase. These synchronization states

dr ~
where

Ik=a E i —a,/g i —a,/E
k= lek, ak = Llyak, bk = L1ka,
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k=1, 2, 3, 4),

Z, Zy

a =

and

fly) = k- ®3)

B is bifurcation parametety is coupling strengthy indi-
cates the resistive component of the inductor gpndle-
notes the current of adjacent oscillator. For computer sim-
ulations, in order to consider theffirence of real circuit

Figure 6: Lissajous figures.
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Figure 7: Phase shifts fgr= 0.330 andy = 0.250 (red is ' . (\ . /‘\ . N
phase dierence between 1st-2nd circuit, green is between A = J (U /

1st-3rd, blue is between 1st-4th).
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N . . Figure 9: First attractor and phase shifts between 1st and
keep changing in-phase and anti-phase by progress of tl%d circuits. (a) 7, = 3400. (b) 7, = 14000. (c) 7
Figure 7 shows the simulation result of long span whicl?[20000 (dj e "142000 .(e)r - 182000. 0 T”
. . D . P . P
represented change of phaséatiences. Here we show 200000
that red dot indicates phasedf@rence between 1st and 2nd '
circuit, green one is between 1st and 3rd, blue one is be-
tween 1st and 4th. Even if initial conditions are changedp switching of in-phase and anti-phase. Figure 8 shows
these synchronization phenomena do not have the qualithat synchronization states between first and the other cir-
tive change and synchronization states of beginning onbuits change by time. Namely, the red point shows the syn-
change in-phase or anti-phase. chronization phenomena between first and second circuits.
Next, we present the relationship of coupling strengtfhis means that two circuits synchronize 270 degrees first,
and synchronization phenomena. We can see chaotic after that phase fference shifts anti-phase and 90 degrees.
tractors in the case of week coupling strength and these
change from chaos to periodic solution by becoming stro
coupling strength. Change of attractors al$keets syn-
chronization phenomena between adjacent chaotic circuits.\e can observe the phase shifts which afeedént from
If the coupling strength become smaller than 0.200, we cafynchronization phenomena of former section by chang-
observe asynchronous between all of adjacent circuits.  jng pifurcation parameter. In this section, we fix the cou-
Also, the four-phase synchronization appears when thgling strengthy = 0.300 and research the behaviors of syn-
coupling strengthy = 0.280. At this time, phase fler-  chronization states for each circuit. Wheis same value
ences synchronize in a particular area clearly as compargfld the coupling strengthftiérs, the chaotic attractors do
not occur but the periodic attractors occur. For example,
one-periodic attractor can be described when the param-
eter isg = 0.280. Synchronization phenomena between
adjacent circuits can be distinguished one anti-phase syn-
chronization and two asynchronous. Also, we can observe
switching of three dferent phase shift whef = 0.290
(see Fig. 10(a)). This means that red point describes phase
shift from 180 to 330 degrees, green one is from 30 to
180 degrees and blue one is switching of anti-phase and
asynchronous. The other case, we can find out the phase
shift which occurs alternately anti-phase synchronization
T S R and asynchronous jji= 0.305 (see Fig. 10(b)). After that,
500 four-phase synchronization occurs (see Fig. 10(c)).
p Next, the chaotic parameter is oy&£ 0.335, the attrac-
tors shift from one-periodic solution to two-periodic solu-
Figure 8: Phase shifts fgr = 0.330 andy = 0.280 (red is  tion. Therefore we can see two types of phadtedinces
phase dierence between 1st-2nd circuit, green is betweegver one synchronization phenomena between adjacent cir-
1st-3rd, blue is between 1st-4th). cuits. These phaseftitrences appear alternately and keep
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Table 1: Change of synchronization stategby

] B \ Synchronization States \
~0.289 Anti-phase and asynchronous
0.289~ 0.300 | Switching of diferent phase shift
0.300~ 0.305 Anti-phase and asynchronous
0.305~ 0.316 | Switching of anti and asynchronous

Phase Differences

0.316~0.335 Four-phase synchronization

0.335~0.336 Phase synchronization ]

0.336~ 0.345 | Switching of in-phase and anti-phase 0 o
0.345~ Divergence @ *

synchronizing while maintaining the states. Also, asyn-
chronous states are observed in whole chaotic networks be-
fore two-periodic solution appear. The time which shifts
from asynchronous until periodic solution depends on the
initial conditions. Two-periodic solution can be seen yitil

= 0.336, the attractors change chaos (see Fig. 10(d)). Then,
we can see week switching of in-phase and anti-phase syn- .
chronization without phase synchronization. (OR

Phase Differences
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5. Conclusion

This article presents synchronization phenomena which
coupled chaotic circuits by regular tetrahedral form. In this
circuit model, we have been able to observe several pat-
terns synchronization phenomena. The observed switching w
in the former study about four coupled van der Pol oscil- of
lators sojourned only anti-phase area but we could confirm ,
sojourn of in-phase area in this coupled chaotic circuits.
Also, the four-phase synchronization are observed newly
and we have found the feather which four-phase synchro-
nization keeps shifting by 90 degrees depending on the bi-
furcation parameter. In the whole of coupled circuits, if
bifurcation parameter is too strong or coupled strength is
too week, this system is always asynchronous.
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Figure 10: The phase shifts (red is phasfedence be-
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