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Abstract—This article presents synchronization phe-
nomena of coupled chaotic circuits by regular tetrahedral
form. We pay attentions to the behavior of each chaotic
circuit and observe the synchronization states between ad-
jacent circuits. In this circuit model, we can observe several
patterns of synchronization phenomena.

1. Introduction

There are a lot of synchronization phenomena in natural
environment. It is one of the nonlinear phenomena that we
can actually observe. For example, swing of the pendulum,
firefly luminescence, cardiac heartbeat etc. are well known
as the synchronization phenomena. Synchronization phe-
nomena have a feature that the set of small power can pro-
duce very big power by synchronizing at a time. Therefore,
studies of synchronization phenomena have been widely
reported not only engineering but also the physical and bio-
logical fields. Coupled chaotic circuits systems are suitable
models to express many kinds of high-dimensional nonlin-
ear phenomena. Especially, many researchers are attracted
to chaotic mechanisms because chaotic synchronizations
include complex behaviors [1]-[4].

In our basic investigations, we use several van der Pol os-
cillators. Van der Pol oscillators have been coupled in var-
ious form and have been investigated about their synchro-

Figure 1: Four coupled oscillators.

Figure 2: Chaotic circuit.

nization phenomena. Especially, we can observe very in-
teresting synchronization phenomena when we couple each
inductor and ground by coupling resistorR. For example,
the circuit model which coupled three van der Pol oscilla-
tors as a ring topology has been found out the three phase
synchronization (phase shift 120 degrees) by the interac-
tion of each oscillator [5]. However, the three-phase syn-
chronization was always observed stably in that system. In
our previous study, we have investigated synchronization
phenomena of coupled van der Pol oscillators in regular
tetrahedral form (see Fig. 1) [6]. We could observe that the
phase difference between adjacent oscillators changed and
that the synchronization was destroyed after the adjacent
oscillators synchronize with anti-phase. In other words,
this circuit model has the feature of repeated anti-phase
synchronous and asynchronous states.

In this study, we investigate synchronization phenom-
ena in coupled chaotic circuits with tetrahedron form. We
pay attentions to the behavior of each chaotic circuit and
observe the synchronization states between adjacent cir-
cuits. Also, we make comparison between coupled oscil-
lators and coupled chaotic oscillators and confirm the rota-
tion of phase differences between adjacent chaotic circuits.
Moreover, we research synchronization states by changing
chaotic parameters.

2. Circuit Model

We show the chaotic circuits using in this investigation
in Fig. 2. This circuit is composed of two types of induc-
tors, a capacitor, a negative resistor and interactive diodes.
We couple each chaotic circuit viaL1 and ground by cou-
pling resistorR in this study. We describe this circuit dia-
gram of coupled chaotic circuits in Fig. 3. In the computer

2012 International Symposium on Nonlinear Theory and its Applications
NOLTA2012, Palma, Majorca, Spain, October 22-26, 2012

- 844 -



Figure 3: Circuit model for tetrahedron form.

simulations, we assume that thevd − ik characteristics of
the nonlinear resistor consisting of diodes by the following
function.

vd(ik) =
9
√

rdik (1)

The normalized circuit equations are expressed as:
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dzk
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(2)
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(k= 1, 2, 3, 4),
and

f (yk) = 9
√

yk. (3)

β is bifurcation parameter,γ is coupling strength,η indi-
cates the resistive component of the inductor andyn de-
notes the current of adjacent oscillator. For computer sim-
ulations, in order to consider the difference of real circuit

Figure 4: Attractor of each chaotic circuit (horizontal
axis:xk, vertical axis:yk (k = 1, 2, 3, 4).

Figure 5: Time waveform of the each circuit.

elements, we suppose the frequency error∆ωk and calcu-
late the phase differences between adjacent chaotic circuits.

3. Synchronization Phenomena

We calculate Eq. (2) using the fourth-order Runge-Kutta
method with the step sizeh = 0.001. In this simulation, we
fix the parametersα = 20.0,η = 0.00001,∆ω1 =0.0,∆ω2

=0.001,∆ω3 =0.002,∆ω4 =0.003, and change the bifur-
cation parameter or the coupling strength. As a result, we
can find out very interesting phase synchronizations which
could not been observed in four coupled oscillators. For
example, we show the simulation result of the synchro-
nization phenomena in Fig. 4 and Fig. 5. In Fig. 4, we
show the attractor of each chaotic circuit and the horizontal
axis is the electric current, and the vertical axis is the volt-
age. We set the parametersβ = 0.330 andγ = 0.250. In
this case, we can observe complex behaviors of time wave-
form and phase differences between adjacent chaotic cir-
cuits are shown as Fig. 6. In this figure, first and fourth
circuit, second and third circuit synchronize in-phase and
phase differences between adjacent other circuits are go-
ing to approach anti-phase. These synchronization states

Figure 6: Lissajous figures.
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Figure 7: Phase shifts forβ = 0.330 andγ = 0.250 (red is
phase difference between 1st-2nd circuit, green is between
1st-3rd, blue is between 1st-4th).

keep changing in-phase and anti-phase by progress of time.
Figure 7 shows the simulation result of long span which
represented change of phase differences. Here we show
that red dot indicates phase difference between 1st and 2nd
circuit, green one is between 1st and 3rd, blue one is be-
tween 1st and 4th. Even if initial conditions are changed,
these synchronization phenomena do not have the qualita-
tive change and synchronization states of beginning only
change in-phase or anti-phase.

Next, we present the relationship of coupling strength
and synchronization phenomena. We can see chaotic at-
tractors in the case of week coupling strength and these
change from chaos to periodic solution by becoming strong
coupling strength. Change of attractors also affects syn-
chronization phenomena between adjacent chaotic circuits.
If the coupling strength become smaller than 0.200, we can
observe asynchronous between all of adjacent circuits.

Also, the four-phase synchronization appears when the
coupling strengthγ = 0.280. At this time, phase differ-
ences synchronize in a particular area clearly as compared

Figure 8: Phase shifts forβ = 0.330 andγ = 0.280 (red is
phase difference between 1st-2nd circuit, green is between
1st-3rd, blue is between 1st-4th).

(a) (b)

(c) (d)

(e) (f)

Figure 9: First attractor and phase shifts between 1st and
2nd circuits. (a) τp = 3400. (b) τp = 14000. (c) τp =

120000. (d) τp = 142000. (e) τp = 182000. (f) τp =

200000.

to switching of in-phase and anti-phase. Figure 8 shows
that synchronization states between first and the other cir-
cuits change by time. Namely, the red point shows the syn-
chronization phenomena between first and second circuits.
This means that two circuits synchronize 270 degrees first,
after that phase difference shifts anti-phase and 90 degrees.

4. Dependence on Bifurcation Parameter

We can observe the phase shifts which are different from
synchronization phenomena of former section by chang-
ing bifurcation parameter. In this section, we fix the cou-
pling strengthγ = 0.300 and research the behaviors of syn-
chronization states for each circuit. Whenβ is same value
and the coupling strength differs, the chaotic attractors do
not occur but the periodic attractors occur. For example,
one-periodic attractor can be described when the param-
eter isβ = 0.280. Synchronization phenomena between
adjacent circuits can be distinguished one anti-phase syn-
chronization and two asynchronous. Also, we can observe
switching of three different phase shift whenβ = 0.290
(see Fig. 10(a)). This means that red point describes phase
shift from 180 to 330 degrees, green one is from 30 to
180 degrees and blue one is switching of anti-phase and
asynchronous. The other case, we can find out the phase
shift which occurs alternately anti-phase synchronization
and asynchronous inβ = 0.305 (see Fig. 10(b)). After that,
four-phase synchronization occurs (see Fig. 10(c)).

Next, the chaotic parameter is overβ = 0.335, the attrac-
tors shift from one-periodic solution to two-periodic solu-
tion. Therefore we can see two types of phase differences
over one synchronization phenomena between adjacent cir-
cuits. These phase differences appear alternately and keep
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Table 1: Change of synchronization states byβ.
β Synchronization States

∼ 0.289 Anti-phase and asynchronous
0.289∼ 0.300 Switching of different phase shift
0.300∼ 0.305 Anti-phase and asynchronous
0.305∼ 0.316 Switching of anti and asynchronous
0.316∼ 0.335 Four-phase synchronization
0.335∼ 0.336 Phase synchronization
0.336∼ 0.345 Switching of in-phase and anti-phase

0.345∼ Divergence

synchronizing while maintaining the states. Also, asyn-
chronous states are observed in whole chaotic networks be-
fore two-periodic solution appear. The time which shifts
from asynchronous until periodic solution depends on the
initial conditions. Two-periodic solution can be seen untilβ
= 0.336, the attractors change chaos (see Fig. 10(d)). Then,
we can see week switching of in-phase and anti-phase syn-
chronization without phase synchronization.

5. Conclusion

This article presents synchronization phenomena which
coupled chaotic circuits by regular tetrahedral form. In this
circuit model, we have been able to observe several pat-
terns synchronization phenomena. The observed switching
in the former study about four coupled van der Pol oscil-
lators sojourned only anti-phase area but we could confirm
sojourn of in-phase area in this coupled chaotic circuits.
Also, the four-phase synchronization are observed newly
and we have found the feather which four-phase synchro-
nization keeps shifting by 90 degrees depending on the bi-
furcation parameter. In the whole of coupled circuits, if
bifurcation parameter is too strong or coupled strength is
too week, this system is always asynchronous.
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