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Abstract—This paper focuses on characteristics of
the chaotic dynamics and improves our previous error-
correcting method using them for noncoherent chaos com-
munications. Our previous method is performed by using
a chaotic sequence generated according to the chaotic dy-
namics. In this case, it is very difficult to recover data with-
out a successive sequence based on the chaotic dynamics.
We focus on this feature and consider that an improved
method separates and reconstructs the chaotic dynamics
of the sequence according to a specific rule. Namely,
the separation and reconstruction of the chaotic dynamics
can be applied for our improved method as additional in-
formation. As results of simulations, we have confirmed
that the advantage gained in BER performance of our im-
proved method is about 2–2.5 dB compared to a conven-
tional method (without coding).

1. Introduction

Chaos communication system is an interesting topic in
the field of engineering chaos [1]– [5]. Especially, many re-
searchers have focused on the development of noncoherent
detections which do not need to use basis signals (unmod-
ulated carriers) for demodulation at a receiver. Differential
chaos shift keying (DCSK) [1] and the optimal receiver [2]
are well-known as typical noncoherent systems. Moreover,
it is also important to develop a suboptimal receiver, which
has a performance equivalent to or similar to the optimal
receiver, using more efficient algorithms [3].

In our previous research, we focused on the chaotic dy-
namics and proposed the error-correcting method using the
chaotic dynamics [6]. In our error-correcting method, two
successive chaotic sequences are generated from the same
chaotic map; the second sequence is generated with an ini-
tial value which is the last value of the first sequence. In this
case, successive chaotic sequences having the same chaotic
dynamics are created. This feature gives the receiver addi-
tional information to correctly recover the information data
and thus improves the bit error performance of the receiver.
Further, our method is operated without a redundancy bit
sequence referred to perform an error correction in stan-
dard communication systems. As results of computer sim-
ulations, we confirmed that the advantage gained in the bit
error rate (BER) performance of our method is about 1–1.5
dB compared to a conventional method (without coding).
Moreover, we found that the chaotic dynamics had a great
influence on the demodulation of chaos communications.

In this study, we further focus on the characteristics
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Figure 1: Block Diagram of CSK Communication System
with Error-Correcting method.

of the chaotic dynamics and improve our error-correcting
method using them. Our error-correcting method is per-
formed by using a chaotic sequence generated according
to the chaotic dynamics. In this case, it is very difficult to
recover data without a successive sequence based on the
chaotic dynamics. We consider that the chaotic dynam-
ics of the sequence is purposely separated using a specific
rule. A transmitter shuffles the order of the sequence ac-
cording to the specific rule for separating the chaotic dy-
namics, and a receiver reconstructs the original chaotic se-
quence using the same rule. Namely, the separation and
reconstruction of the chaotic dynamics can be applied for
our error-correcting method as additional information. In
this paper, we describe operations of our improved error-
correcting method. In addition, we carry out computer sim-
ulations and evaluate BER performance of the improved
method.

2. System Overview

We consider the discrete-time binary Chaos Shift Keying
(CSK) communication system with the error correcting, as
shown in Fig. 1. Detail of each block is described below.

2.1. Transmitter

In the transmitter, binary data are encoded by chaotic
sequences generated by a chaotic map. In this study, we
use a skew tent map which is one of simple chaotic maps,
and it is described as follows.

xi+1 =


2xi + 1 − a

1 + a
(−1 ≤ xi ≤ a),

−2xi + 1 + a

1 − a
(a < xi ≤ 1).

(1)

Where i = 0, 1, · · · , N − 1, a denotes a position of
the top of the skew tent map. Our encoder is designed
based on CSK which is a digital modulation scheme us-
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Figure 2: Operation of Encoder (ex. N = 2, K = 4).

ing chaos. Figure 2 shows our encoder for our error-
correcting method. To perform the error correction at the
receiver, K information bit are transmitted as K signal
blocks (0, 1, · · · , j, · · · ,K − 1). The encoder selects a
chaotic signal generator according to the symbol. Here, we
denote “f (i)(x0)” as the skew tent map (Eq. (1)). When
the symbol “1” and “0” are sent, f (i)(x0) and g(i)(x0) (=
−f (i)(x0)) are used, respectively. Also, we denote U and
V as a total number of symbol “1” and “0”, respectively.
Thus, the signal vector Xu and Yv are different for each
symbol.
When the symbol “1” is sent,

Xu = (xj , f (1)(xj), · · · , f (i)(xj), · · · , f (N−1)(xj)).
(2)

When the symbol “0” is sent,

Yv = (yj , g(1)(yj), · · · , g(i)(yj), · · · , g(N−1)(yj)). (3)

Where u = 0, 1, · · · , U − 1, v = 0, 1, · · · , V − 1, xj or
yj denotes the initial value of the jth symbol = “1” or “0”
respectively, N is the chaotic sequence length per 1 bit.
When K bit data is transmitted, the amount of the data be-
comes K × N . Thus, the amount of the data per bit of the
proposed method becomes the same as the standard CSK.

An initial value is chosen at random when beginning to
make signal blocks and is different in each chaotic sig-
nal generator. In addition, the j-th sequence is generated
from the initial value which is the end value of the for-
mer sequence with same symbol of j-th bit. As an exam-
ple, we assume N = 2, K = 4 and the data are (1, 0,
0, 1), as shown in Fig. 2. In this case, the signal vector
S′(= S′

0,S′
1, · · · ,S′

K−1) is given as follows.

S′ = (S′
0,S′

1,S′
2,S′

3) = (X0,Y0,Y1,X1)
= (x0, x1, y0, y1, y2, y3, x2, x3).

As one can see, the initial value of the 3rd symbol (S′
3)

and 2nd symbol (S′
2) is generated by the end value of 0th

symbol (S′
0) and 1st symbol (S′

1), respectively.
In this study, the encoder shuffles the chaotic sequence

Table 1: Example Pattern of Interleaver (πk): K = 4.
Number of Before After

each symbol

π0
U = 4 X0,X1,X2,X3 X1,X3,X0,X2

V = 0 – –

π1
U = 3 X0,X1,X2 X1,X0,X2

V = 1 Y0 Y0

π2
U = 2 X0,X1 X0,X1

V = 2 Y0,Y1 Y1,Y0

π3
U = 1 X0 X0

V = 3 Y0,Y1,Y2 Y0,Y2,Y1

π4
U = 0 – –
V = 4 Y0,Y1,Y2,Y3 Y2,Y0,Y3,Y1

in each symbol using an interleaver πk (k : 0, 1, · · · ,K).
Here, we explain conditions and operations of the inter-
leaver. As an advance preparation, we prepare K + 1
interleavers. These shuffle patterns are different accord-
ing to the number of each transmitting symbol. Each in-
terleaver’s pattern is set at random and does not corre-
spond with other one. In addition, the interleaver only
shuffles the signal vector of each symbol. Note that the
order of the sequence having each signal vector does not
change. For example, Tab. 1 shows the patterns of the in-
terleaver when K = 4. The encoder counts the number
of each symbol and chooses the interleaver correspond-
ing to this number. In the case of data=(1, 0, 0, 1), π2

is chosen because the number of the symbol “1” and “0”
is two respectively. Therefore, the transmitting sequence
S(= S0,S1, · · · ,SK−1) is given as follows.

S = (S0,S1,S2,S3) = (X0,Y1,Y0,X1)
= (x0, x1, y2, y3, y0, y1, x2, x3)
= (s0, s1, s2, s3, s4, s5, s6, s7). (4)

As one can see, Y0 switches positions with Y1 according
to π2.

2.2. Channel

The channel distorts the signal and corrupts it by noise.
In this study, noise of the channel is assumed to be the ad-
ditive white Gaussian noise (AWGN). Thus, the received
sequence is given by R = (r0, r1, · · · , rKN−1) = S +
AWGN.

2.3. Receiver

The receiver demodulates the information symbol from
the received sequence. Also, the receiver performs the error
correction in this study. Since we consider the noncoherent
chaos communication, the receiver memorizes the chaotic
map used for the modulation at the transmitter. However,
the receiver never knows the initial value of chaos in the
transmitter. In the next section, we describe operations of
our improved error-correcting method in detail.

3. Improved Error-Correcting method

Our error-correcting method consists of the suboptimal
detector and the error correction based on chaotic dynam-
ics, as shown in Fig. 3.
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Figure 3: Operation of Improved Error-Correcting Method (ex. N = 2, K = 4).

First, the receiver performs the noncoherent detection
for each received block and demodulates each symbol. In
this study, we apply our suboptimal detection algorithm
as the noncoherent detection [6]. Our suboptimal detec-
tor calculates the shortest distance between R′

i and Nd-
dimensional space made from Nd successive chaotic sig-
nals generated by the skew tent map (Nd : 2, 3, · · ·), and
outputs the sum of the distance, which achieves the mini-
mum shortest distance within the set of l, from i = 0 to
N − Nd. Here, R′

i is the Nd successive signals beginning
with i with in the received signals defined as

R′
i = (rα+i, rα+i+1, ..., rα+i+Nd−1), (5)

where α = j×N . Also, l is the number of the straight lines
in the Nd-dimensional space (i.e., l = 2Nd−1). When two
symbols are transmitted, two kinds of the Nd-dimensional
space corresponding to each symbol are made. Let us con-
sider the case of Symbol “1”. For calculating the shortest
distance, we find the closest point Pl between R′

i and the
l-th line using the scalar product of the vector. When both
edges of the l-th line are defined as P′

l and P′′
l, as shown

in Fig. 4, the closest point Pl is calculated by the following
equation.

Pl = (ul · vl)ul + P′
l, (6)

unit vector ul =
P′′

l − P′
l

||P′′
l − P′

l||
, (7)

vl = R′
i − P′

l. (8)

In the same ways, we can find the closest point Ql between
R′

i and the l-th line of the space of Symbol “0”. Then, the
above operations are expressed as∑

D1 =
N−Nd∑

i=0

min
l

||Pl − R′
i||. (9)

∑
D0 =

N−Nd∑
i=0

min
l

||Ql − R′
i||. (10)

Finally, we decide the decoded symbol as 1 (or 0) for∑
D1 <

∑
D0 (or

∑
D1 >

∑
D0).

After demodulation of each symbol, the receiver per-
forms the error correction. For ease of explanation, we use
same assumption in the explanation of the encoder (Fig. 2).
Also, we assume that the detection error has occurred at the

Pl’
Pl’’

ul

vl

D1

Ri’

Pl 

Figure 4: Calculation of Shortest Distance.

3rd symbol (d3), namely the case of 1 bit correction.
First, the receiver sorts the received sequence based on

decoded symbols. In addition, the receiver counts the
number of each decoded symbol and chooses a deinter-
leaver π−1

k corresponding to this number. The deinter-
leaver π−1

k reconstructs the sequence which is shuffled
by the interleaver πk when the number of each symbol
in the receiver corresponds with the transmitter one. In
this example, π−1

3 is chosen because the numbers of “1”
and “0” are one and three, respectively. Here, we de-
fine the deinterleaved sequence based on decoded symbol
“1” (or “0”) as M = (m0,m1, · · · ,mC1−1) (or N =
(n0, n1, · · · , nC0−1)), where C1 and C0 are the total of
M and N, respectively. Next, the receiver analyzes the
chaotic dynamics of M and N. For analyzing the chaotic
dynamics, the receiver applies our suboptimal detection al-
gorithm, i.e., the calculation of the shortest distance be-
tween the chaotic maps and two deinterleaved sequences.
Thus, we define a reference distance Dbasis as follows.

Dbasis = GoD1(M) + GoD0(N). (11)

Where GoD1(M) (or GoD0(N)) is the shortest distance
between M (or N) and the Nd-dimensional space of Sym-
bol “1” (or “0”).

GoD1(M) =
C1−Nd∑

i=0

min
l

||Pl − M′
i||. (12)

GoD0(N) =
C0−Nd∑

i=0

min
l

||Ql − N′
i||. (13)

Next, the receiver assumes the detection error has oc-
curred at the j-th symbol and reverses this symbol, as
shown in Fig. 5. Moreover, the receiver sorts the received
sequence and chooses the deinterleaver according to the re-
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versed symbol and other symbols. Using the deinterleaved
sequence, we calculate the distance DR(j) as follows.

DR(j) = GoD1(M(j)) + GoD0(N(j)). (14)

Where M(j) and N(j) denote deinterleaved sequences
when the j-th decoded symbol is reversed. Here, DR(j)
means the shortest distance between the deinterleaved se-
quence and the chaotic map corresponding to their se-
quences. If the receiver can detects symbols and dein-
terleaves the sequence correctly in the first step, DR(j)
becomes lager values as compared with Dbasis. On the
other hands, if the error has occurred, some one of DR(0)–
DR(K−1) becomes smaller as compared with Dbasis. For
instance, we consider that the error has occurred at the 3rd
symbol, as shown in Fig. 5. In this case, DR(3) becomes
the smallest distance as compared with Dbasis and other
DR(j). The reason for this is that the receiver can recon-
struct the original chaotic sequences of symbol “1” and “0”
from the received sequence by choosing the correct deinter-
leaver. Therefore, the receiver selects the smallest distance
from Dbasis and DR(j) and corrects an error. Addition-
ally, in this example, the receiver can determine that the
error has occurred at the 3rd symbol.

4. Simulation Results

We evaluate the performance of the improved error-
correcting method by computer simulations. The simula-
tion conditions are as follows. In the transmitting side, we
assume K = 16. The parameter of the skew tent map is
fixed as a = 0.05. For calculation of the shortest distance,
we use 4-dimensional space (Nd = 4). Moreover, we only
perform the 1 bit error correction. Based on these condi-
tions, we iterate the simulation 10,000 times and calculate
BER performance.

Figures 6(a) and (b) show the BERs versus Eb/N0 for
N = 4 and N = 8, respectively. We plot three perfor-
mances: (1) Improved error-correcting method, (2) the pre-
vious one [6], (3) the conventional method (without cod-
ing). From these figures, we can confirm that the advan-
tage gained in BER performance of the improved error-
correcting method is about 2–2.5 dB compared to the con-
ventional method. Moreover, it can be observed that the
performance of the improved error-correcting method is
better than the previous one. Namely, we achieve that the
capability of our error-correcting method increases by sep-
arating and reconstructing the chaotic dynamics using the
interleaver and the deinterleaver.
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Figure 6: BER vs. Eb/N0 (K = 16 and Nd = 4).

5. Conclusions

In this study, we have improved our proposed error-
correcting method by separating the chaotic dynamics. As
results, it has been achieved that the capability of the im-
proved error-correcting method increases as compared with
the previous one. Therefore, we have concluded that the
separation and reconstruction of the chaotic dynamics are
very effective as additional information to recover data.
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