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Abstract—In this study, we analyze fifteen coupled
chaotic oscillators composed of RC circuits. In particular,
we pay our attention on the cross correlation characteris-
tics between neighboring oscillators. In addition, we in-
vestigate the cross correlation characteristics between the
first oscillator and the others. By computer calculations,
we investigate how the cross correlation changes as a cir-
cuit parameter increases. Further, the oscillators in the later
stage are confirmed to have stronger correlation than those
in the early stage.

1. Introduction

Recently, many researchers have shown their interests
in chaotic systems. Chaos has been investigated not only
in engineering but also in various fields such as medicine,
sociology and economics. In the field of electrical and
electronic engineering, researchers have proposed various
applications using chaos as chaos communications, chaos
cryptosystem, chaos neural networks and so on. In order
to realize chaotic engineering systems, it is important to
investigate simple chaos-generating circuits.

In our previous study, a simple chaotic oscillator using
two RC circuits were proposed [1]. We carried out com-
puter calculations and investigated chaotic behavior when
the number of RC circuits increased [2].

In this study, we analyze fifteen coupled chaotic oscil-
lators composed of RC circuits. In particular, we pay our
attention on the cross correlation characteristics between
neighboring oscillators. In addition, we investigate the
cross correlation characteristics between the first oscillator
and the others. By computer calculations, we investigate
how the cross correlation changes as a circuit parameter
increases. Further, the oscillators in the later stage are con-
firmed to have stronger correlation than those in the early
stage.

2. Circuit model

Figure 1 shows the circuit model. In this figure 15
chaotic oscillators, which was proposed in [1], are coupled
via one-way coupling through simple comparators. An in-
dependent rectangular voltage source is connected only to
the first oscillator and the voltage across one of the two ca-
pacitors in the previous stage of oscillators is inputted to the

comparators in the next oscillator. Hence, the whole circuit
consists of one rectangular voltage source, 30 comparators,
30 resistors, and 30 capacitors.

Figure 2(a) shows the rectangular voltage waveform
VS(t) inputted to the first oscillator.Eα is the amplitude
of the rectangular voltage andT is the period of the wave-
form. The circuit equations are described as follows:

RC
dv1

dt
=

{
−v1 + E (v2 > VS)
−v1 − E (v2 < VS)

RC
dv2

dt
=

 −v2 − E (v1 > VS)

−v2 + E (v1 < VS)

RC
dvn

dt
=

 −vn + E (vn+1 > vn−1)

−vn − E (vn+1 < vn−1)

RC
dvn+1

dt
=

 −vn+1 − E (vn > vn−1)

−vn+1 + E (vn < vn−1)
(1)

(n = 3, 5, 7, 9, · · · , 29)

whereE is the output voltage of the comparators, namely
the DC supply voltage of the operational amplifiers. By
using the following variables and the parameters,

vk = Exk, t = RCτ, T = RCβ, (2)

(k = 1, 2, 3, 4, · · · , 30)

we obtain the normalized circuit equations. Because the
circuit equations are linear in each region, the rigorous so-
lution of the circuit equations can be derived as follows:

x1 =

 (x10 − 1)e−τ + 1 (x2 > Vα)

(x10 + 1)e−τ − 1 (x2 < Vα)

x2 =

 (x20 + 1)e−τ − 1 (x1 > Vα)

(x20 − 1)e−τ + 1 (x1 < Vα)

xn =

 (xn0 − 1)e−τ + 1 (xn+1 > xn−1)

(xn0 + 1)e−τ − 1 (xn+1 < xn−1)

xn+1 =

{
(x(n+1)0 + 1)e−τ − 1 (xn > xn−1)
(x(n+1)0 − 1)e−τ + 1 (xn < xn−1)

(3)

(n = 3, 5, 7, 9, · · · , 29)

whereVα corresponds toVS and shown in Fig. 2(b), and
x10, x20 andxn0 are initial values (n =3, 5, 7, 9,· · · , 29).
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Figure 1: Circuit model.

3. Simulation results

Figure 3 shows some examples of chaotic attractors ob-
tained from computer calculations. We compare Fig. 3(a2)
with (c2), then we can see that the degree of chaos becomes
larger for the later stage. When the value ofα becomes
larger, only periodic attractors are observed in the early
stages as shown in Fig. 3(a3).

Figures 4(a) and (b) show the time waveform, when the
values ofα are 0.058 and 0.080, respectively. There exist
regular and irregular parts in the waveforms. We pay our
attentions on the relation between the time waveforms of
neighboring oscillators.

We show the cross correlations of neighboring oscilla-
tors in Figs. 5(a) and (b). Vertical axis is the correlation co-
efficient Rx,y betweenxm and xm+2 (m = 1,3,5,7,17,27).
Horizontal axis shows the delay time∆τ. We find that
neighboring oscillators correlate from Figs. 5(a) and (b).
In Fig. 5(a), when the value of∆τ is 0.18, the cross correla-
tion coefficient of x1 − x3 takes the largest value 0.53. The
cross correlation coefficient of x27 − x29 takes the largest
value 0.67 also for∆τ = 0.18. Therefore, we can say that
the cross correlation becomes larger for the later stages. We

(a) (b)

Figure 2: Rectangular voltage waveform.

(1)

(2)

(3)

(a) (b) (c)

Figure 3: Chaotic attractors obtained from computer calcu-
lations forβ = 4.0. (a)x1−x3, (b) x13−x15, and (c)x29−x30.
(1) α = 0.058, (2)α = 0.080, and (3)α = 0.100.

summarize the values of∆τ for which the cross correlation
coefficient takes the maximum value max(Rxy) in Table 1.
We find that the neighboring oscillators have strong posi-
tive correlations.

Figures 6 and 7 show the attractors reconstructed by con-
sidering the time delay∆τ shown in Table 1. From the
shapes of these attractors, we can also see that the neigh-
boring oscillators are correlated with some amount of time
delay.

Next, Fig. 8 shows the cross correlations of the first os-
cillator and others. Vertical axis is the correlation coeffi-
cientRx,y betweenx1 andxl (l = 3, 5,11,17, 23,29). Hor-
izontal axis shows the delay time∆τ. We can see that
the correlation coefficients betweenx1 and others are very
small exceptx3 andx5. This means that the first oscillator
does not have strong correlations with the oscillators on the
later stages.

Figure 9 shows the attractors reconstructed by consider-
ing the appropriate time delay obtained from Fig. 8. We
cannot see any strong correlations.
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(a)

(b)

Figure 4: Time waveforms forβ = 4.0. From top: x1,
x3, x5, x7, x9, x11, x13, x15, x17, x19, x21, x23, x25, x27, x29.
(a)α = 0.058 and (b)α = 0.080.

Table 1: Time delay∆τ with the maximum values of cor-
relation coefficient max(Rxy).

α = 0.058 α = 0.080
∆τ max(Rx,y) ∆τ max(Rx,y)

x1 − x3 0.18 0.53 0.20 0.63
x3 − x5 0.22 0.64 0.20 0.56
x5 − x7 0.21 0.61 0.22 0.61
x7 − x9 0.18 0.54 0.26 0.72

x17 − x19 0.21 0.70 0.20 0.66
x27 − x29 0.18 0.67 0.21 0.73

(a)

(b)

Figure 5: Graph of the cross correlation value of neighbor-
ing oscillators forβ = 4.0. (a)α = 0.058 and (b)α = 0.080.

4. Conclusion

In this study, we have analyzed fifteen coupled chaotic
oscillators composed of RC circuits. In particular, we paid
our attention on the cross correlation characteristics be-
tween neighboring oscillators. In addition, we investigated
the cross correlation characteristic between the first oscil-
lator and others. By computer calculations, we investi-
gated the cross correlation changes as a circuit parameter
increases. We could observe the cross correlation char-
acteristic between neighboring oscillators. However, we
found that non-adjacent oscillator does not have correla-
tion. The chaotic oscillators in the later stage were con-
firmed to have stronger correlation than those in the early
stage.

In our future work, we will subject detailed research of
the cross correlation of neighboring oscillators and analyze
with Lyapunov exponent.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Attractors reconstructed with time delay forα =
0.058 andβ = 4.0. (a) x1(τ) − x3(τ + 0.18), (b) x3(τ) −
x5(τ+0.22), (c)x5(τ)−x7(τ+0.21), (d)x7(τ)−x9(τ+0.18),
(e) x17(τ) − x19(τ + 0.21), and (f)x27(τ) − x29(τ + 0.18).
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(a) (b) (c)

(d) (e) (f)

Figure 7: Attractors reconstructed with time delay forα =
0.080 andβ = 4.0. (a) x1(τ) − x3(τ + 0.20), (b) x3(τ) −
x5(τ+0.20), (c)x5(τ)−x7(τ+0.22), (d)x7(τ)−x9(τ+0.26),
(e) x17(τ) − x19(τ + 0.20), and (f)x27(τ) − x29(τ + 0.21).

Figure 8: Cross correlation values of the first oscillator and
others forα = 0.080 andβ = 4.0.

(a) (b) (c) (d)

Figure 9: Attractors reconstructed with time delay forα =
0.080 andβ = 4.0. (a)x1(τ)−x5(τ+0.30), (b)x1(τ)−x9(τ+
1.33), (c)x1(τ)− x17(τ+0.17), and (d)x1(τ)− x29(τ+1.35).
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