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Abstract—In this paper, a multidimensional search procedure
is presented for estimating spatial signature with uniform linear
array in the presence of unknown gain and phase errors.
The proposed method fully exploits multiple invariances in the
interior of the sensor array and it is desirable that the quality of
estimate improves as more and more array invariances are used.
A Gauss-Newton iterative algorithm is applied for solving the
multidimensional nonlinear problem. Simulation results indicate
that a solution close to the minimum is obtained after only two
or three iterations. Furthermore, the introduction of a weighting
matrix, similar to weighted subspace fitting, can tone up the
performance of our method.

I. INTRODUCTION

In sensor array signal processing, many high-resolution

methods such as ESPRIT [1] have been advanced for es-

timation of unknown parameters embedded in array output

model. It is a natural motivation of array calibration, since the

performance of these methods will degrade dramatically when

the ideal array model is damaged by some unknown errors

(e.g., mutual coupling and sensor position uncertainties).

Two parametric errors (i.e., statistical and deterministic)

were usually used to extend the ideal array model. This paper

only focus on the deterministic unknown gain and phase errors.

The term deterministic here implies that the unknown error at

each of elements of array is a complex stable constant during

the period of observation.

Several so-called auto-calibration approaches have been

developed in literature. Here, the auto-calibration indicates

that array calibration may be accomplished without employing

any dummy elements or transmitters at known direction. In

[2], an iterative eigenstructure-based technique of estimating

Directions-of-Arrival (DOA’s) in the presence of unknown

gain and phase errors is presented and it can apply to arbitrary

array geometries except uniform linear array (ULA). For ULA,

a phase ambiguity exists between the diagonal error matrix

and the ideal array steering matrix (see [3] and [4]). Thus,

it is impossible to estimate DOA and gain and phase errors

simultaneously for ULA. A Hermitian Toeplitz structure of

ULA output covariance matrix in the absence of gain and

phase errors is exploited in [5] and [6]. This method takes

advantage of the elements equivalence at every diagonal line

to form two equations for estimation of gain and phase errors.

The main drawback of the approach is that the Toeplitz

matrix assumption is only established under infinite sampling

condition. It means that if the number of snapshots is fixed, the

performance of the algorithm does not improve after increasing

the signal-to-noise ratio (SNR) to a certain point. In addition,

ESPRIT method also can be extended to the case. The idea

firstly emerged from [7], and is applied for estimating spatial

signature in [8] and [4]. A closed-form ESPRIT-like method

(see [4]) constructs an estimator based on the maximum

overlapping two subarrays. However, it has been pointed out

in [9] that any two subarrays configuration may be inherently

suboptimal.

In this paper, we consider the spatial signature estimation

problem with ULA in the presence of unknown gain and phase

errors. The practicality of spatial signature can be found in

[8] and [4]. Unlike ESPRIT-like method, our algorithm fully

exploits the multiple invariances into ULA even though the

array model errors exist. The sensor gain and phase errors

are different from mutual coupling among elements of array

and it can not be affected by other sensors. Furthermore, the

steering matrix of ideal ULA has a Vandermonde structure.

Both of them provide the possibility of selecting subarrays

from uncalibrated array. It is natural to expect that an estimator

formulated by multiple invariances in the array performs better

than the one involved only one invariance. In practice, a

multidimensional procedure of minimizing a cost function is

presented. Our method firstly estimates the rotational DOA’s

(not the absolute DOA’s) and error parameters, then obtains the

estimation of spatial signature. The Gauss-Newton algorithm

[10] is suggested for solving the multidimensional search

problem. The choice of the initial values is essential for the

global convergence of the iterative method. The excellent

initial inputs are provided by ESPRIT-like method. Computer



simulations show that only two or three iterations are required

to achieve acceptable estimation values.

II. DATA MODEL

A uniform linear array with M sensors received narrowband

signals from p far-field sources and the vector response y ∈
CM×1 of the array at time t can be expressed as

y(t) = Γ(γ)A(θ)s(t) + n(t), (1)

where s(t) ∈ Cp×1 is the vector of incident signals at time t,
n(t) ∈ CM×1 is the vector of additive noises, the ideal array

steering matrix A(θ) =
[
a(θ1) a(θ2) · · · a(θp)

]
, and

a(θ) =
[
1 ej

2π
λ d sin(θ) · · · ej

2π
λ (M−1)d sin(θ)

]T
. (2)

Here, θ1, θ2, · · · , θp are the Directions-of-Arrival of signals, d
and λ represent the distance between two consecutive sensors

and the identical wavelength for all signals, respectively. The

matrix Γ(γ) = diag
[
γ1 γ2 · · · γM

]
and |γi| > 0

denotes the deterministic unknown gain and phase error of

sensor i.
Two assumptions need to be made. Firstly, s(t) is a tempo-

rally complex white Gaussian random vector with mean zero

and its covariance matrix Rss has full rank p (assuming no

correlate signals). Secondly, n(t) is a temporally and spatially

complex white Gaussian random vector with mean zero and

uncorrelated with incident signals.

The focus of this paper is the estimation of Spatial Sig-
nature matrix V = Γ(γ)A(θ) from the N snapshots of

the array outputs. One ambiguity for this problem may be

observed between the unknown signal vector s(t) and V (i.e.,

V s(t) = αV · ( 1
αs(t)) for an unknown non-zero scaling α).

A reasonable constraint for solving this scaling ambiguity is

to let the first element of diagonal matrix Γ(γ) be equal to

one.

III. ESTIMATION ALGORITHM

A new subspace approach is presented for estimating spatial

signature matrix V in this section. The so-called signal

subspace Es and noise subspace En can be obtained from

the array outputs covariance matrix R = E{y(t)yH(t)}.

The Vandermonde structure of the ideal array steering

matrix A(θ) permits optimally exploiting multiple invariances

for ULA even though the gain and phase of the sensor has not

been calibrated. It is expected that an algorithm, fully making

use of the particular properties, should obtain superior results

than ESPRIT-like estimator proposed in [4]. Assume that the

array comprises n identical subarrays of m sensors. Obviously,

overlapping subarrays make M ≤ mn. In addition, since the

one-to-one correspondence between rows in V and elements

of array, extracting a subarray from array is equivalent to

picking up m rows of matrix V by a m × M selection

matrix J i. The full row rank matrix J i consists of zeros and

ones. Only one element at every row is equal to one and it

corresponds to the selected sensor of the array.

The determinant of the matrix Γ(γ) is given by

det(Γ(γ)) =
M∏
i=1

γi �= 0, (3)

then the Rank of the matrix V is p, i.e., Rank(Γ(γ)A(θ)) = p.

It is clear that the matrix Γ(γ)A(θ) spans the same space as

the signal subspace Es. The relation implies that there exists

a nonsingular p× p matrix T satisfying

J iEs = J iΓ(γ)A(θ)T . (4)

Considering n subarrays, we have

JEs =

⎡
⎢⎢⎢⎢⎢⎣

Es1

Es2

Es3

...

Esn

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

Γ1A1

Γ2A1Φ
ε1

Γ3A1Φ
ε2

...

ΓnA1Φ
εn−1

⎤
⎥⎥⎥⎥⎥⎦T , (5)

where the matrix J is formed by selection matrix J i and J =[
JT

1 JT
2 · · · JT

n

]T
, Esi, Γi and A1 may be calculated

by the following equations:

Esi = J iEs, Γi = J iΓ(γ)J
T
i , A1 = J1A(θ). (6)

The matrix Φ is given by

Φ = diag
[
ej

2π
λ d sin(θ1) · · · ej

2π
λ d sin(θp)

]
. (7)

εid denotes the distance between the (i + 1)th subarray and

the reference subarray. Analogous to MI ESPRIT method in

[11], the unknown parameter vector μ may now be obtained

from the following least squares problem

Ω(μ) =

∥∥∥∥∥∥∥∥∥∥∥

⎡
⎢⎢⎢⎢⎢⎣

Es1

Es2

Es3

...

Esn

⎤
⎥⎥⎥⎥⎥⎦W 1/2 −

⎡
⎢⎢⎢⎢⎢⎣

Γ1A1

Γ2A1Φ
ε1

Γ3A1Φ
ε2

...

ΓnA1Φ
εn−1

⎤
⎥⎥⎥⎥⎥⎦T

∥∥∥∥∥∥∥∥∥∥∥

2

F

(8)

and

μ = [ γ̄2 · · · γ̄M γ̃2 · · · γ̃M

ρ1 · · · ρp θ1 · · · θp ]T , (9)

where W is a Hermitian positive definite weighting matrix,

γ̄i and γ̃i, respectively, denote the real part and image part of

scaling γi. Since the signal subspace Es is usually substituted

with Ês obtained from the eigendecomposition of the sample

covariance matrix, the unitary matrix Φ in (7) becomes

Φ = diag
[
ρ1e

j 2π
λ d sin(θ1) · · · ρpe

j 2π
λ d sin(θp)

]
. (10)

Next, for ease of notation, we define

Υ = W T/2
[
ET

s1 ET
s2 · · · ET

sn

]
(11)

and

Ψ =
[
AT

1 Γ1 Φε1AT
1 Γ2 · · · Φεn−1AT

1 Γn

]
. (12)



The expression in (8) is reformulated as

Ω(μ) =
∥∥∥Υ− T TΨ

∥∥∥2
F
. (13)

Here, the equations ΦεiT = Φεi and Γi
T = Γi are used.

This is a nonlinear least squares problem for unknown vector

μ (see, [10]). Solving T T by minimizing the cost function Ω,

we can obtain

T̂
T
= ΥΨH

(
ΨΨH

)−1

. (14)

Substituting this back to (13) yields to

μ̂ = argmin
μ

Ω = argmin
μ

∥∥∥ΥΠ⊥
Ψ

∥∥∥2
F

(15)

where

Π⊥
Ψ = I −ΨH(ΨΨH)−1Ψ. (16)

Note that, it is reasonable to involve all of the elements of the

array for estimating unknown parameters. The limiting case

is that there are no overlapping subarrays (i.e., M = mn).

Thus, the matrix Ψ has full row rank except for deleting some

sensors from the array (i.e., M < mn). So the matrix (ΨΨH)
is nonsingular.

IV. ALGORITHM IMPLEMENTATION

The method considered herein requires a multidimensional

search over parameter vector μ ∈ R2(M+p−1)×1. It is well

known that the Gauss-Newton algorithm [10], [12] is a clas-

sical way to obtain the solution of this problem. Considering

the cost function Ω in (15), the unknown parameters can be

iteratively obtained by

μk+1 = μk − ξkH
−1Q, (17)

where μk denotes the estimate at k iteration, ξk is a iterative

step length, the gradient vector Q = ∂Ω
∂μ and the Hessian

matrix H = ∂2Ω
∂μ∂μT are evaluated at μk.

We define a vector r formed by columns scanning matrix

ΥΠ⊥
Ψ, i.e.,

r = vec
{
ΥΠ⊥

Ψ

}
. (18)

Then, the cost function Ω becomes

Ω = rHr. (19)

In the following, based on the above equation, the expres-

sions for the gradient vector and an approximate Hessian

matrix are presented. Firstly, considering the gradient of Ω
w.r.t μi, the ith element of the gradient vector Q is given by

Qi =
∂Ω

∂μi

= 2Re
{
rHi r

}
, (20)

where ri =
∂r
∂μi

. The ijth component of the Hessian matrix

may be expressed as (see [12], [13])

Hij =
∂2Ω

∂μi∂μj

� 2Re
{
rHi rj

}
. (21)

Reasons for this approximation (i.e., ignoring the second

derivative of r ) can be found in [11], [12] and it brings two

benefits for the Gauss-Newton iterative algorithm. One is that

the approximate Hessian matrix is positive semidefinite and

it guarantees −H−1Q to be decent direction. The other is

that we only need to calculate the first derivative of r instead

of the second one. Furthermore, a useful modification to ill-

conditioned cases is to usually use (H + ζI) in lieu of H ,

where ζ is a scaling.

Next, we focus on the first derivative of vector r in (18).

By the aid of the differentiation of the projection matrix [10],

ri may be expressed as

ri = −vec

{
Υ

(
Ψ†ΨiΠ

⊥
Ψ +

(
Ψ†ΨiΠ

⊥
Ψ

)H
)}

(22)

where Ψ† = ΨH(ΨΨH)−1 and Ψi =
∂Ψ
∂μi

. The expression

of Ψi can be obtained from (6), (9), (10) and (12). This is

a tiresome calculation process. However, it can be simplified

with the observation that
∂Φεi−1AT

1 Γi

∂γj
= 0 if γj can not be in-

cluded in matrix Γi, otherwise,
∂Φεi−1AT

1 Γi

∂γ̄j
= Φεi−1AT

1 Ikk

and
∂Φεi−1AT

1 Γi

∂γ̃j
= jΦεi−1AT

1 Ikk, where Ikk is a matrix

with one in the kkth position and zeros elsewhere, γj is the

kth element at the main diagonal of matrix Γj . Moreover,

∂Φεi−1AT
1 Γi

∂θj
=

(
∂Φεi−1

∂θj
AT

1 +Φεi−1
∂AT

1

∂θj

)
Γi, (23)

and

∂Φεi−1AT
1 Γi

∂ρj
=

∂Φεi−1

∂ρj
AT

1 Γi. (24)

From the above analyses, the vector ri can be calculated

conveniently.

The proposed algorithm now is briefly outlined below.

1) Estimate the signal subspace Ês from the eigende-

composition of the sample covariance matrix R̂ =
1
N

∑N
n=1 y(n)y

H(n), where N is the finite number of

snapshots.

2) Initialize vector μ utilizing ESPRIT-like method [4].

3) Update μ according to (17) until the stopping criterion

is satisfied, then form the estimates of γ̂ and θ̂.

4) Calculate matrix Γ(γ̂) and A(θ̂), then spatial signature

matrix is estimated as V̂ = Γ(γ̂)A(θ̂).

Note that, although the ESPRIT-like method can only pro-

vide rotational values over true DOA’s θ and true gain and

phase error matrix Γ, it makes no difference to estimation

of spatial signature V . The identifiability of V from signal

subspace Es can be found in [4]. In addition, it is an

intractable problem on how to choose weighting matrix W .

Refer to the weighted subspace fitting (WSF) method, we

define

W opt = (Λ̂s − σ̂2
nI)

2Λ̂
−1

s , (25)
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Fig. 1. RMSE of the spatial signature matrix H estimation versus SNR.
The number of snapshots N = 500

where the diagonal matrix Λ̂s contains the so-called signal

eigenvalues estimated from the array outputs sample covari-

ance matrix, σ̂2
n denotes the consistent estimate of noise power.

Simulation results using the proposed algorithm show that

W = W opt results in a better performance for parameter

estimates than W = I .

V. EXPERIMENTS

In this section, computer simulations were conducted for

evaluating the performance of the proposed algorithm. In all

scenarios, a ULA of 9 elements with half of wavelength

element spacing is used. The ULA is divided into 5 sub-

arrays and the ith subarray is selected by matrix J i =
[05×(i−1), I5×5,05×(5−i)], i = 1, · · · , 5. The deterministic

gain and phase errors are given by 1, 1.10ej10
◦
, 0.90e−j5◦ ,

1.25ej20
◦
, 0.80e−j9◦ , 0.96ej15

◦
, 1.18e−j23◦ , 0.88e−j2◦ and

0.85ej4
◦
. Two equal-power uncorrelated signals are considered

and the SNR per element for each source is defined by

SNR = 10 log10(σ
2
s/σ

2
n), where σ2

s and σ2
n, respectively,

denote the power of incident signal and that of additive noise

at each sensor. RMSE is used as the performance measure and

defined by

RMSE =
1

K

K∑
i=1

√∥∥∥V̂ i − V i

∥∥∥2
F
, (26)

where K is the number of trials, V̂ i and V i are the estimated

spatial signature and the true one at the ith experiment,

respectively. A total of 200 trials were performed for each

simulation scenario.

Example 1: Performance versus SNR
In this example, two closed sources located at 25◦ and 30◦

were used. For comparison, we give the results of ESPRIT-like

method [4] and the proposed method in this paper. Figure 1

shows that our method performs better than ESPRIT-like even

in the weighting matrix W = I . It means that the maximum

overlapping subarray is not the optimal choice in the presence

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Fig. 2. RMSE of the spatial signature matrix H estimation versus the number
of snapshots N . SNR = 15dB

of unknown sensor gain and phase responses. In other words,

fully exploiting the multiple invariances in the array should

be taken into account. In addition, adding a weighting matrix

can evidently improve the performance of our algorithm.

Example 2: Performance versus Number of Snapshots
In the second case, the performance of different algorithms

versus the number of snapshots N were compared. The DOA’s

assumed to be 25◦ and 40◦. Similar conclusions to the Exam-

ple 1 can be made from Figure 2. It is worth pointing out that

the behavior of our method has been improved significantly at

large number of snapshots. The reason may be that excellent

initial input values are provided by the ESPRIT-like method.

Simulation results also show that our method only requires

2-4 Gauss-Newton iterations and the main performance im-

provement comes from the first two iterations.

VI. CONCLUSIONS

A multidimensional search algorithm is presented for spatial

signature estimation for ULA with unknown gain and phase

errors. Our method fully excavates the multiple invariances

of the ULA and is implemented with the help of the Gauss-

Newton iterative algorithm. Because of excellent initial pa-

rameter values provided by ESPRIT-like, our method can

converge rapidly to a appropriate solution. On the other hand,

the introduction of a weighting matrix W further improve

the performance of the proposed algorithm. How to select

subarrays from ULA, making the algorithm lead to optimal

parameter estimation, is not addressed in this paper. Some

pragmatic discussion about this question can be found in [9].
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