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Abstract—Solving combinatorial optimization problems is one
of the important applications of neural networks. Many re-
searchers have proposed noise induced hopfield neural networks
in which noises are induced state values of neurons. However, the
noise inducing method to state values of neurons cause problems.

In this study, we propose hopfield neural networks with
periodic brake. In the proposed system, external noises are not
induced to state values of neurons. Thus, the proposed system
can avoid the problem caused in the noise induced system.
We investigate the solving ability of the proposed system for
quadratic assignment problems and designing of parameters.

I. INTRODUCTION

The hopfield neural networks (HNN) is a form of recurrent
artificial neural network invented by Hopfield and have been
applied to solve combinatorial optimization problems [1].
When connection weights between neurons are related to
given problems, the network gives a good solution. Because,
the energy of the network converges to a minimum value
with natural operation determined by the connection weights.
However, the solutions are often trapped into local minimums
and do not reach the global minimum demanded. In order to
avoid this problem and solve the global minimum effectively,
several methods inducing some kinds of noises are proposed
by researchers [2]-[8]. Especially, methods that noises are
induced into state values of neurons are well proposed and
studied. In these methods, noises are induced to state val-
ues of neurons in the HNN, and then firing neurons are
forcibly switched by the noises. These methods are effective to
avoid local minimums. However these noise inducing methods
sometimes causes a problem. When the noise induced HNNs
are used to solve quadratic assignment problems (QAP), the
neurons of HNNs are arranged on a plane surface in order to
adapt to two-dimensional matrices of the solving problems.
The HNN without noise is constructed to fire only one neuron
on each line. However, in the noise induced HNNs, two or
more neurons located on a line sometimes fire. Figure 1 shows
a pattern of the firing of two neurons on a line. In the figure,
black colored squares show firing neurons, and two neurons
enclosed in the red colored circle fire on the same horizontal
line. The firing of two or more neurons on a line is a problem
of this noise inducing method and causes high dependence on
solving problems.

By the way, in the real wold, human cannot concentrate
on one thing for a long period of time. Human can keep
high-concentration for ten minutes at most in professional
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Fig. 1. An example of firing of two neurons on a line.

view. So that, a break is important to refresh. It is necessary
to have a break for keep his mind clear and concentrate
again. If he continues to do his task without a break, the
efficiency of his task is down. Such a break is inferred to
make neurons rest and refresh and then yields high-efficiency.
Although the HNN is not real physical neural networks, we
adapt this idea to the HNN for escape local minimums and
propose a method to escape local minimums. We call the
proposing system HNN with periodic brake (HNN-PB). In
the proposed system, random values are periodically given
to coupling weights between neurons in the network. The
state values of neurons in HNN-PB converge according to the
given random values of the coupling weights. Then, the system
escapes from local minimums. The advantage of the proposed
method is that firing of two or more neurons on a line is not
caused because the system does not include noise terms in
state values.

In this study, we investigate the solving ability of the HNN-
PB for QAP. We confirm that the method is effective to solve
QAP by computer simulations. Then, we investigate designing
of optimal parameters for the HNN-PB.
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Fig. 2. Flow chart of HNN-PB.

II. SOLVING QAP WITH HNN

Various methods are proposed for solving QAP which
is one of the NP-hard combinatorial optimization problems.
We explain QAP with a factory arrangement problem. The
problem is given by two matrices, distance matrix C denoting
the distances between the factories and flow matrix D denoting
the flow of the products between the factories, and is to find
the permutation P which corresponds to the minimum value
of the objective function f(P ) in Eq. (1).

f(P ) =
N∑

i=1

N∑
j=1

CijDp(i)p(j), (1)

where Cij and Dij are the (i,j)-th elements of C and D,
respectively, p(i) is the i-th element of vector P , and N is the
size of the problem. There are many real applications which
are formulated by Eq. (1). Other examples are the placement of
logical modules in an IC chip and the distribution of medical
services in large hospital.

Because the QAP is very difficult, it is almost impossible
to solve the optimum solution in large problems. Further,
computation time is very long to obtain the exact optimum
solution. Therefore, it is usual to develop heuristic methods
which search nearly optimal solutions in reasonable time.

For solving N-element QAP by the HNN, N × N neurons
are required and the following energy function is defined to
fire (i,j)-th neuron at the optimal position:

E =
N∑

i,m=1

N∑
j,n=1

ωim;jnximxjn +
N∑

i,m=1

θimxim. (2)

The neurons are coupled each other with coupling weight
between (i,m)-th neuron and (j,n)-th neuron and the threshold
of the (i,m)-th neuron are described by:

ωim,jn = −2
{

A(1 − δmn)δij + Bδmn(1 − δij) +
CijDmn

q

}
θ = A + B

(3)
where A and B are positive constant, and δij is Kroneker’s
delta. The state of N×N neurons are asynchronously updated
due to the following difference equation:

xim(t + 1) = f

 N∑
j,n=1

ωim;jnxim(t)xjn(t) − θim

 , (4)

where f is sigmoidal function defined as follows:

f(x) =
1

1 + exp(−x
ε )

. (5)

1354



III. ALGORITHM OF HNN-PB
We explain hopfield neural network with periodic brake

(HNN-PB) in detail. Figure 2 shows flow chart of the HNN-
PB. The algorithm of the HNN-PB can be separated into two
parts which are alternately repeated in iteration. One of the
two parts is a solving part in which the distance matrix and
the flow matrix of QAP are inputed to Cij and Dmn in Eq. 3.
Then, the states of the neurons in the HNN-PB are updated
with the same updating method of the general HNN. In the
solving part, the operation of the HNN-PB is completely the
same as the general HNN. The other part is a brake part in
which random values are inputed to Cij and Dmn in Eq. 3
every iteration. The random value is a value between 0 and
Nmax. The updating operation of the neurons in the brake part
is the same as that of the solving part. So, all the equations
and the updating operation of neurons in the HNN-PB are
the same as the general HNN. The two parts are alternately
repeated. The iteration time of the solving part and the brake
part are denoted by Tsolve and Tbrake, respectively. The length
of one cycle of the two parts is termed as Tperiod:

Tperiod = Tsolve + Tbrake. (6)

In the HNN-PB, Cij and Dmn in Eq. 3 periodically become
random values, although the updating equation of the states of
neurons does not include a noise term. Therefore, firing of a
neuron which is forcibly caused by a noise does not happen
in the HNN-PB. Firing of two or more neurons on a line does
not caused.

IV. SIMULATION RESULTS

In this section, the simulation results of HNN-PB for 12-
element QAP are shown. The problem used here was chosen
from the site QAPLIB named “Nug12” [9]. The global mini-
mum of Nug 12 is known as 578. The parameters of HNN-PB
are set as A = 0.9, B = 0.9, q = 70 and ε = 0.35. The value
of ε used in this study is larger than other general HNNs which
include noise terms in update equations of state values of
neurons. Namely, the gradient of the sigmoid function used in
this study is glacis. The glacis gradient of the sigmoid function
makes neurons need a long iteration time to converge to a
stable state. This prevent that state values of neurons suddenly
change to states which do not relate to the solving problem
when random values are inputed to the coupling weights in
brake parts. To prevent sudden change of the state values of
neurons in brake parts is important to solve good solutions.
The other parameters associated with the periodic brake are set
as Nmax = 5.0, Tperiod = 10 and Tbrake = 3. We carried out
1000 trails of 10000 iterations. In order to verify the solving
ability of the HNN-PB, we compare the solving ability of
the HNN-PB to the noise induced HNN that intermittency
chaotic noises are induced to update equations of state values
of neurons, proposed in [5].

Next, we tried another problem, whose name is “Tai12a”.
The global minimum of Tai12a is 224416. The parameters of
the HNN are fixed as A = 0.9, B = 0.9, q = 9000 and
ε = 0.20. The other parameters associated with the periodic

TABLE I
SOLVING ABILITIES FOR NUG12.

Iteration HNN with noise HNN-PB
1000 632.96 602.234
2000 623.30 596.942
3000 619.82 594.188
4000 616.18 592.354
5000 613.56 591.114
6000 612.68 590.234
7000 611.74 589.624
8000 610.48 588.948
9000 610.30 588.434
10000 609.96 587.916

TABLE II
SOLVING ABILITIES FOR TAI12.

Iteration HNN with noise HNN-PB
4000 252624.44 245032.000
8000 251337.90 242803.980
12000 250291.38 240742.440
16000 249638.16 239133.920
20000 249520.72 237915.700
24000 249495.62 237111.160
28000 249458.04 236779.760
32000 249335.58 236673.520
36000 249228.40 236375.820
40000 249225.84 236044.340

brake are set as Nmax = 110, Tperiod = 10 and Tbrake = 4.
We carried out 1000 trails of 40000 iterations.

Tables 1 and 2 show the mean values of the best solutions
obtained during each iteration numbers for Nug12 and Tai12a,
respectively. From these results, the HNN-PB gains better
performance than the noise induced HNN.

The convergence speed of state values of neurons in the
HNN-PB is slow because of the glacis gradient of the sigmoid
function and the system cannot solve the global minimum in
brake parts. However, comparing with the noise induced HNN,
the HNN-PB solve better solutions in the same limit of itera-
tion. In the noise induced HNN, chaotic noises are generated
every iterations and induced to the state values of all neurons,
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Fig. 3. Passege of the state value of a neuron which shift from a non-firing
neuron to a firing neuron.
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(d) (e)

Fig. 4. State values of neurons around a brake part. (a) State values of neurons before a brake part. (b), (c) and (d) shows state values of neurons every
iteration in the brake part. (e) State values of neurons after the brake part.

whereas random values are inputed to coupling weights only
in brake parts in the HNN-PB. Thus, the computing speed of
the HNN-PB is faster than the noise induced HNN.

V. PASSAGE OF STATE VALUES OF NEURONS

We explain the passage of state values of neurons in HNN-
PB when Tperiod = 10 and Tbrake = 3 which are set as an
example. Figure 4 shows the passage of the state value of a
neuron which shift 0 to 1 on iteration. In the figure, horizontal
axis is iteration time. The iteration is started with a solving
part. So, from 1 to 7 iteration, the state value of the neuron
converge a local minimum in the solving part. After that, a
brake part is started in which random values are inputed to
the coupling weights. Then, the brake part is finished at 10
iteration. In the second brake part from 17 to 20 iteration, the
state value of the neuron changes significantly. After that, in
the next solving part, the state value of the neuron tend toward
1 which correspond to firing of the neuron. In the process, the
HNN-PB escape from the local minimum.

Figure 4 shows the states of all neurons around a brake
part. Figure 4(a) shows the states of the neurons before the

brake part. Almost neurons converge to a stable state. Figures
4(b), (c) and (d) show the states of the neurons every iteration
in the brake part. By increasing iteration time, black colored
neurons which converged in Fig. 4(a) fade, and the number of
gray colored neurons increase. However, some neurons stay
about the same. In this way, initial values of the next solving
part become non-uniform state values which are a little similar
to the state values before the brake part. Figure 4(e) shows the
states of the neurons after the brake part. The neurons tend
toward another local minimum or the global minimum.

VI. DESIGNING OF OPTIMAL PARAMETERS

We investigate designing of optimal parameters. For solving
Nug12, the optimal parameters are Nmax = 5.0, Tperiod = 10
and Tbrake = 3. Tperiod is designed associated with ε. If ε
is big, neurons converge a local minimum fast, whereas if
ε is small, the convergence speed is slow. When ε = 0.35,
neurons converge a local minimum for about 10 iterations.
Thus, Tperiod is set at 10. If Tperiod increase, the efficiency
to search solutions is down because states of neurons do not
change after convergence, iterations after the convergence are
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waste. If Tperiod decrease, the effect of the random values
induced in brake parts become strong. As the result, it becomes
difficult that the system close in the global minimum. Figure
5 shows the mean values of the best solutions when Nug12
is solved, the parameter Tperiod is fixed at 10 and Tbrake

and Nmax vary. Figure 6 shows the mean values of the best
solutions when Nug12 is solved, the parameter Tperiod is fixed
at 5 and Tbrake and Nmax vary. Comparing the two figures,
the solving abilities in Fig. 6 are worse than that of Fig. 5.
Small value of Tperiod make the efficiency to solve the global
minimum worse.

Tbrake bears a trade-off relationship to Nmax. When Nmax

is large, small values of Tbrake gain good solving abilities.
Whereas, when Nmax is small, relatively small values of
Tbrake gain good solving avility. This relationship can be
seen in the figures. As we explained in the last section, the
state values of neurons which trapped in a local minimum
are changed and the system can escape the local minimum
by inputing random values to coupling weights in brake parts.
Large random values inputed in the brake parts make sudden
change of the state values of neurons. When the small random
values are inputed in the brake parts, it need long iteration
time to change the state values of the neurons. Therefore, the
relationship between Tbrake and Nmax explained in the above
is obtained.

For solving Tai12a, the optimal parameters are Nmax =
110, Tperiod = 10 and Tbrake = 4. Figure 7 shows the
mean values of the best solutions when Tai12a is solved,
the parameter Tperiod is fixed at 10 and Tbrake and Nmax

vary. A rough value of Nmax is decided in association with
values of the flow matrices and the distance matrices of the
solving problems. The maximum values of the flow matrix and
the distance matrix in Nug12 are 10 and 5, respectively. The
maximum values of the flow matrix and the distance matrix in
Tai12 are 99. In brake parts, random values are inputed to Cij

and Dmn in Eq. 3. The maximum value of the random values
inputed to Cij and The maximum value of the random values
inputed to Dmn are the same value which is Nmax. Nmax is
designed as become relatively similar to the maximum values
of the solving problems. Because, the parameter q of HNN-
PB is decided in association with values of the matrices of
the solving problem, and q is constant in solving parts and in
break part. Therefore, Nmax is necessary to suit to the solving
problem.

From the figures, we can see combinations of small Nmax

and some few iteration of Tbrake make better result than
combinations of large Nmax and one iteration of Tbrake. If
Nmax is large, the states of the neurons are suddenly attracted
to the states which are not related to the solving problem
in brake parts. Then, the system cannot reach to the global
minimum in solving parts, sufficiently. On the other hand, if
Nmax is small, certain informations of the local minimums
which obtained for the solving problem before brake parts
remain after the brake parts. Then, the system can search
around the global minimum, effectively.
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Fig. 5. Mean values of the best solutions for solving Nug12 Tperiod = 10.
x-axis: Nmax. y-axis: Tbrake. z-axis: Mean values of the best solutions.
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Fig. 6. Mean values of the best solutions for solving Nug12 Tperiod = 5.
x-axis: Nmax. y-axis: Tbrake. z-axis: Mean values of the best solutions.
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Fig. 7. Mean values of the best solutions for solving Tai12 Tperiod = 10.
x-axis: Nmax. y-axis: Tbrake. z-axis: Mean values of the best solutions.
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VII. CONCLUSIONS

In this study, we proposed hopfield neural network with
periodic brake in which random values are periodically inputed
to coupling weights between neurons instead of inputing flow
and distance matrices of solving problems. One main feature
of the proposed system is that external noises are not induced
to state values of neurons. We investigated the solving ability
of the proposed system for quadratic assignment problems.
By computer simulation, we have confirmed that the proposed
system can find better solutions comparing with the noise
induced HNN in which noises are induced to state values
of neurons. Moreover, the computing speed of the HNN-PB
is faster than the noise induced HNN. Then, we investigated
designing of optimal parameters.
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